No Arabic abstract
Context. The Sun shows an activity cycle that is caused by its varying global magnetic field. During a solar cycle, sunspots, i.e. extended regions of strong magnetic fields, occur in activity belts that are slowly migrating from middle to lower latitudes, finally arriving close to the equator during the cycle maximum phase. While this have been well known for centuries, much less is known about the solar cycle evolution of small-scale magnetic fields. Aims. To address this question, we study magnetic bright points (MBPs) as proxies for such small-scale, kG solar magnetic fields. This study is based on a homogeneous data set that covers a period of eight years. Methods. An automated MBP identification algorithm was applied to the synoptic Hinode/SOT G-band data over the period November 2006 to August 2014, i.e. covering the decreasing phase of Cycle 23 and the rise, maximum, and early decrease of Cycle 24. This data set includes, at the moment of investigation, a total of 4 162 images, with about 2.9 million single MBP detections. Results. After a careful preselection and monthly median filtering of the data, the investigation revealed that the number of MBPs close to the equator is coupled to the global solar cycle but shifted in time by about 2.5 years. Furthermore, the instantaneous number of detected MBPs depends on the hemisphere, with one hemisphere being more prominent, i.e. showing a higher number of MBPs. After the end of Cycle 23 and at the starting point of Cycle 24, the more active hemisphere changed from south to north. Conclusions. These findings suggest that there is indeed a coupling between the activity of MBPs close to the equator with the global magnetic field. The results also indicate that a significant fraction of the magnetic flux that is visible as MBPs close to the equator originates from the sunspot activity belts.
We report the detection of variable stars within a 11.5 x 11.5 region near the Galactic centre (GC) that includes the Arches and Quintuplet clusters, as revealed by the VISTA Variables in the Via Lactea (VVV) survey. There are 353 sources that show Ks-band variability, of which the large majority (81%) correspond to red giant stars, mostly in the asymptotic giant branch (AGB) phase. We analyze a population of 52 red giants with long-term trends that cannot be classified into the typical pulsating star categories. Distances and extinctions are calculated for 9 Mira variables, and we discuss the impact of the chosen extinction law on the derived distances. We also report the presence of 48 new identified young stellar object (YSO) candidates in the region.
G-band bright points (GBPs) are thought to be the foot-points of magnetic flux tubes. The aim of this paper is to investigate the relation between the diffusion regimes of GBPs and the associated longitudinal magnetic field strengths. Two high resolution observations of different magnetized environments were acquired with the Hinode/Solar Optical Telescope. Each observation was recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images. GBPs are identified and tracked automatically, and then categorized into several groups by their longitudinal magnetic field strengths, which are extracted from the calibrated NFI magnetograms using a point-by-point method. The Lagrangian approach and the distribution of diffusion indices approach are adopted separately to explore the diffusion regime of GBPs for each group. It is found that the values of diffusion index and diffusion coefficient both decrease exponentially with the increasing longitudinal magnetic field strengths whichever approach is used. The empirical formulas deduced from the fitting equations are proposed to describe these relations. Stronger elements tend to diffuse more slowly than weak elements, independently of the magnetic flux of the surrounding medium. This may be because the magnetic energy of stronger elements is not negligible compared with the kinetic energy of the gas, and therefore the flows cannot perturb them so easily.Yang
Current observations of the Galactic Center (GC) seem to display a core-like distribution of bright stars from $sim 5$ inwards. On the other hand, we observe young, massive stars at the GC, with roughly 20-50% of them in a disc, mostly in the region where the bright giants appear to be lacking. In a previous publication we put the idea forward that the missing stars are deeply connected to the presence of this disc. The progenitor of the stellar disc is very likely to have been a gaseous disc that at some point fragmented and triggered star formation. This caused the appearance of overdensity regions in the disc that had high enough densities to ensure stripping large giants of their atmospheres and thus rendering them very faint. In this paper we use a stellar evolution code to derive the properties that a red giant would display in a colour-magnitude diagram, as well as a non-linearity factor required for a correct estimate of the mass loss. We find that in a very short timescale, the red giants (RGs) leave their standard evolutionary track. The non-linearity factor has values that not only depend on the properties of the clumps, but also on the physical conditions the giant stars, as we predicted analytically. According to our results, envelope stripping works, moving stars on a short timescale from the giant branch to the white dwarf stage, thus rendering them invisible to observations.
We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtained with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs/Mm^2, which is a factor three larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13 G and 33 G. If network and inter-network regions are counted separately, they contain 2.2 BPs/Mm^2 and 0.85 BPs/Mm^2, respectively.
Magnetic bright points are small-scale magnetic elements ubiquitous across the solar disk, with the prevailing theory suggesting that they form due to the process of convective collapse. Employing a unique full Stokes spectropolarimetric data set of a quiet Sun region close to disk centre obtained with the Swedish Solar Telescope, we look at general trends in the properties of magnetic bright points. In total we track 300 MBPs in the data set and we employ NICOLE