Origin of the X-ray Broad Iron Spectral Feature in GRS 1915+105


Abstract in English

The X-ray spectrum of GRS 1915+105 is known to have a ``broad iron spectral feature in the spectral hard state. Similar spectral features are often observed in Active Galactic Nuclei (AGNs) and other black-hole binaries (BHBs), and several models have been proposed for explaining it. In order to distinguish spectral models, time variation provides an important key. In AGNs, variation amplitude has been found to drop significantly at the iron K-energy band at timescales of ~10 ks. If spectral variations of black-holes are normalized by their masses, the spectral variations of BHBs at timescales of sub-seconds should exhibit similar characteristics to those of AGNs. In this paper, we investigated spectral variations of GRS 1915+105 at timescales down to ~10 ms. This was made possible for the first time with the Suzaku XIS Parallel-sum clocking (P-sum) mode, which has the CCD energy-resolution as well as a time-resolution of 7.8 ms. Consequently, we found that the variation amplitude of GRS 1915+105 does not drop at the iron K-energy band at any timescales from 0.06 s to 63000 s, and that the entire X-ray flux and the iron feature are independently variable at timescales of hours. These are naturally understood in the framework of the ``partial covering model, in which variation timescales of the continuum flux and partial absorbers are independent. The difference of energy dependence of the variation amplitude between AGN and BHB is presumably due to different mechanisms of the outflow winds, i.e., the partial absorbers are due to UV-line driven winds (AGN) or thermally-driven winds (BHB).

Download