Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis


Abstract in English

Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorption and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display a range where the organism profits maximally from the spatial correlation of the incoming light. By contrast, no maximum is found for membranes with low core-core clustering. We employ a detailed membrane model with state-of-the-art empirical inputs. Our results suggest that the organization of the membranes antenna complexes may be well-suited to the spatial correlations present in an natural light source. Future experiments will be needed to test this prediction.

Download