Do you want to publish a course? Click here

Dynamical stability of the Holographic System with Two Competing Orders

94   0   0.0 ( 0 )
 Added by Yiqiang Du
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.



rate research

Read More

156 - Ran Li , Yu Tian , Hongbao Zhang 2016
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one band superfluid phases, the coexistent superfluid phase has also been found in the AdS soliton background for the first time. We construct the complete phase diagram in the $e-mu$ plane by numerics, which is consistent with our qualitative analysis. Furthermore, we calculate the corresponding optical conductivity and sound speed by the linear response theory. The onset of pole of optical conductivity at $omega=0$ indicates that the spontaneous breaking phase always represents the superfluid phase, and the residue of pole is increased with the chemical potential, which is consistent with the fact that the particle density is essentially the superfluid density for zero temperature superfluids. In addition, the resulting sound speed demonstrates the non-smoothness at the critical points as the order parameter of condensate, which indicates that the phase transitions can also be identified by the behavior of sound speed. Moreover, as expected from the boundary conformal field theory, the sound speed saturates to $frac{1}{sqrt{2}}$ at the large chemical potential limit for our two band holographic superfluid model.
We present a dynamical mean-field study of two-particle dynamical response functions in two-band Hubbard model across several phase transitions. We observe that the transition between theexcitonic condensate and spin-state ordered state is continuous with a narrow strip of supersolidphase separating the two. Approaching transition from the excitonic condensate is announced bysoftening of the excitonic mode at theMpoint of the Brillouin zone. Inside the spin-state orderedphase there is a magnetically ordered state with 2x2 periodicity, which has no precursor in thenormal phase.
206 - Peng Liu , Jian-Pin Wu 2021
We study the anisotropic properties of dynamical quantities: direct current (DC) conductivity and butterfly velocity. The anisotropy plays a crucial role in determining the phase structure of the two-lattice system. Even a small deviation from isotropy can lead to distinct phase structures, as well as the IR fixed points of our holographic systems. In particular, for anisotropic cases, the most important property is that the IR fixed point can be non-AdS$_2 times mathbb R^2$ even for metallic phases. As that of a one-lattice system, the butterfly velocity can also diagnose the quantum phase transition (QPT) in this two-dimensional anisotropic latticed system.
Quantum magnets provide the simplest example of strongly interacting quantum matter, yet they continue to resist a comprehensive understanding above one spatial dimension (1D). In 1D, a key ingredient to progress is Luttinger liquid theory which provides a unified description. Here we explore a promising analogous framework in two dimensions, the Dirac spin liquid (DSL), which can be constructed on several different lattices. The DSL is a version of Quantum Electrodynamics ( QED$_3$) with four flavors of Dirac fermions coupled to photons. Importantly, its excitations also include magnetic monopoles that drive confinement. By calculating the complete action of symmetries on monopoles on the square, honeycomb, triangular and kagom`e lattices, we answer previously open key questions. We find that the stability of the DSL is enhanced on the triangular and kagom`e lattices as compared to the bipartite (square and honeycomb) lattices. We obtain the universal signatures of the DSL on the triangular and kagom`e lattices, including those that result from monopole excitations, which serve as a guide to numerics and to experiments on existing materials. Interestingly, the familiar 120 degree magnetic orders on these lattices can be obtained from monopole proliferation. Even when unstable, the Dirac spin liquid unifies multiple ordered states which could help organize the plethora of phases observed in strongly correlated two-dimensional materials.
In this paper we study the dynamical instability of Sakai-Sugimotos holographic QCD model at finite baryon density. In this model, the baryon density, represented by the smeared instanton on the worldvolume of the probe D8-overline{D8} mesonic brane, sources the worldvolume electric field, and through the Chern-Simons term it will induces the instability to form a chiral helical wave. This is similar to Deryagin-Grigoriev-Rubakov instability to form the chiral density wave for large N_c QCD at finite density. Our results show that this kind of instability occurs for sufficiently high baryon number densities. The phase diagram of holographic QCD will thus be changed from the one which is based only on thermodynamics. This holographic approach provides an effective way to study the phases of QCD at finite density, where the conventional perturbative QCD and lattice simulation fail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا