No Arabic abstract
Based on an examination of the solutions to the Killing Vector equations for the FLRW-metric in co moving coordinates , it is conjectured and proved that the components(in these coordinates) of Killing Vectors, when suitably scaled by functions, are emph{zero modes} of the corresponding emph{scalar} Laplacian. The complete such set of zero modes(infinitely many) are explicitly constructed for the two-sphere. They are parametrised by an integer n. For $n,ge,2$, all the solutions are emph{irregular} (in the sense that they are neither well defined everywhere nor are emph{square-integrable}). The associated 2-d vectors are also emph{not normalisable}. The $n=0$ solutions being constants (these correspond to the zero angular momentum solutions) are regular and normalizable. Not all of the $n=1$ solutions are regular but the associated vectors are normalizable. Of course, the action of scalar Laplacian coordinate independent significance only when acting on scalars. However, our conclusions have an unambiguous meaning as long as one works in this coordinate system. As an intermediate step, the covariant Laplacians(vector Laplacians) of Killing vectors are worked out for four-manifolds in two different ways, both of which have the novelty of not explicitly needing the connections. It is further shown that for certain maximally symmetric sub-manifolds(hypersurfaces of one or more constant comoving coordinates) of the FLRW-spaces also, the scaled Killing vector components are zero modes of their corresponding scalar Laplacians. The Killing vectors for the maximally symmetric four-manifolds are worked out using the elegant embedding formalism originally due to Schrodinger . Some consequences of our results are worked out. Relevance to some very recent works on zero modes in AdS/CFT correspondences , as well as on braneworld scenarios is briefly commented upon.
In this article, I discuss the construction of some globally conserved currents that one can construct in the absence of a Killing vector. One is based on the Komar current, which is constructed from an arbitrary vector field and has an identically vanishing divergence. I obtain some expressions for Komar currents constructed from some generalizations of Killing vectors which may in principle be constructed in a generic spacetime. I then present an explicit example for an outgoing Vaidya spacetime which demonstrates that the resulting Komar currents can yield conserved quantities that behave in a manner expected for the energy contained in the outgoing radiation. Finally, I describe a method for constructing another class of (non-Komar) globally conserved currents using a scalar test field that satisfies an inhomogeneous wave equation, and discuss two examples; the first example may provide a useful framework for examining the arrow of time and its relationship to energy conditions, and the second yields (with appropriate initial conditions) a globally conserved energy- and momentumlike quantity that measures the degree to which a given spacetime deviates from symmetry.
In this paper we prove that the $k$-th order metric-affine Lovelock Lagrangian is not a total derivative in the critical dimension $n=2k$ in the presence of non-trivial non-metricity. We use a bottom-up approach, starting with the study of the simplest cases, Einstein-Palatini in two dimensions and Gauss-Bonnet-Palatini in four dimensions, and focus then on the critical Lovelock Lagrangian of arbitrary order. The two-dimensional Einstein-Palatini case is solved completely and the most general solution is provided. For the Gauss-Bonnet case, we first give a particular configuration that violates at least one of the equations of motion and then show explicitly that the theory is not a pure boundary term. Finally, we make a similar analysis for the $k$-th order critical Lovelock Lagrangian, proving that the equation of the coframe is identically satisfied, while the one of the connection only holds for some configurations. In addition to this, we provide some families of non-trivial solutions.
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry. In the second Chapter we explore the MAG model building. In Chapter 3 we use a well known procedure to excite torsional degrees of freedom by coupling surface terms to scalars. Then, in Chapter 4 which seems to be the most important Chapter of the thesis, at least with regards to its use in applications, we present a step by step way to solve for the affine connection in non-Riemannian geometries, for the first time in the literature. A peculiar f(R) case is studied in Chapter 5. This is the conformally (as well as projective invariant) invariant theory f(R)=a R^{2} which contains an undetermined scalar degree of freedom. We then turn our attention to Cosmology with torsion and non-metricity (Chapter 6). In Chapter 7, we formulate the necessary setup for the $1+3$ splitting of the generalized spacetime. Having clarified the subtle points (that generally stem from non-metricity) in the aforementioned formulation we carefully derive the generalized Raychaudhuri equation in the presence of both torsion and non-metricity (along with curvature). This, as it stands, is the most general form of the Raychaudhuri equation that exists in the literature. We close this Thesis by considering three possible scale transformations that one can consider in Metric-Affine Geometry.
We present a framework in which the projective symmetry of the Einstein-Hilbert action in metric-affine gravity is used to induce an effective coupling between the Dirac lagrangian and the Maxwell field. The effective $U(1)$ gauge potential arises as the trace of the non-metricity tensor $Q_{mu a}{}^a$ and couples in the appropriate way to the Dirac fields to in order to allow for local phase shifts. On shell, the obtained theory is equivalent to Einstein-Cartan-Maxwell theory in presence of Dirac spinors.
In this letter we investigate gauge invariant scalar fluctuations of the metric in a non-perturbative formalism for a Higgs inflationary model recently introduced in the framework of a geometrical scalar-tensor theory of gravity. In this scenario the Higgs inflaton field has its origin in the Weyl scalar field of the background geometry. We found a nearly scale invariance of the power spectrum for linear scalar fluctuations of the metric. For certain parameters of the model we obtain values for the scalar spectral index $n_s$ and the scalar to tensor ratio $r$ that fit well with the Planck 2018 results. Besides we show that in this model the trans-planckian problem can be avoided.