Review of Spin Orbit Coupled Semimetal SrIrO3 in thin film form


Abstract in English

Spin orbit coupling provides a mechanism to lock the momentum of electron to its spin degree, recent years was revealed to be essential in arousing many novel physical behaviors. SrIrO3 is a typical metallic member of the strong spin orbit coupling iridate family. Its orthorhombic phase was confirmed as a particular spin orbit coupling assistant electron correlated semimetal with small electron and hole pockets, and was supposed to host versatile topological phases, with prospect of opening a new topological matter field based on oxides. The existing experiments have demonstrated that orthorhombic SrIrO3 can be easily synthesized at two dimensional scale films under the substrate lattice constraint, and the films display Fermi-liquid behavior in high temperature and generally two dimensional weak localization resulted metal insulator transition. The properties of orthorhombic SrIrO3 film are sensitive to the rotation and tilting angle, as well as the interlayer coupling of the IrO6 octahedras, consequently can be tuned through substrate strain engineering and size scale. For example, the film was approached a state similar to Sr2IrO4 at the ultrathin limit to several unit cell, becoming a canted antiferromagnetic semiconductor/insulator. The existing knowledges suggest urgent demands of researches on the superlattices constructed with orthorhombic SrIrO3, for further understanding the evolution mechanism of the electron structure, and so the relevant magnetic state and topological phases in the orthorhombic SrIrO3 and its family.

Download