Do you want to publish a course? Click here

The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

114   0   0.0 ( 0 )
 Added by Jonathan Krause
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Current approaches for fine-grained recognition do the following: First, recruit experts to annotate a dataset of images, optionally also collecting more structured data in the form of part annotations and bounding boxes. Second, train a model utilizing this data. Toward the goal of solving fine-grained recognition, we introduce an alternative approach, leveraging free, noisy data from the web and simple, generic methods of recognition. This approach has benefits in both performance and scalability. We demonstrate its efficacy on four fine-grained datasets, greatly exceeding existing state of the art without the manual collection of even a single label, and furthermore show first results at scaling to more than 10,000 fine-grained categories. Quantitatively, we achieve top-1 accuracies of 92.3% on CUB-200-2011, 85.4% on Birdsnap, 93.4% on FGVC-Aircraft, and 80.8% on Stanford Dogs without using their annotated training sets. We compare our approach to an active learning approach for expanding fine-grained datasets.



rate research

Read More

Working with data in table form is usually considered a preparatory and tedious step in the sensemaking pipeline; a way of getting the data ready for more sophisticated visualization and analytical tools. But for many people, spreadsheets -- the quintessential table tool -- remain a critical part of their information ecosystem, allowing them to interact with their data in ways that are hidden or abstracted in more complex tools. This is particularly true for data workers: people who work with data as part of their job but do not identify as professional analysts or data scientists. We report on a qualitative study of how these workers interact with and reason about their data. Our findings show that data tables serve a broader purpose beyond data cleanup at the initial stage of a linear analytic flow: users want to see and get their hands on the underlying data throughout the analytics process, reshaping and augmenting it to support sensemaking. They reorganize, mark up, layer on levels of detail, and spawn alternatives within the context of the base data. These direct interactions and human-readable table representations form a rich and cognitively important part of building understanding of what the data mean and what they can do with it. We argue that interactive tables are an important visualization idiom in their own right; that the direct data interaction they afford offers a fertile design space for visual analytics; and that sense making can be enriched by more flexible human-data interaction than is currently supported in visual analytics tools.
In this paper, we study the sensitivity of CNN outputs with respect to image transformations and noise in the area of fine-grained recognition. In particular, we answer the following questions (1) how sensitive are CNNs with respect to image transformations encountered during wild image capture?; (2) how can we predict CNN sensitivity?; and (3) can we increase the robustness of CNNs with respect to image degradations? To answer the first question, we provide an extensive empirical sensitivity analysis of commonly used CNN architectures (AlexNet, VGG19, GoogleNet) across various types of image degradations. This allows for predicting CNN performance for new domains comprised by images of lower quality or captured from a different viewpoint. We also show how the sensitivity of CNN outputs can be predicted for single images. Furthermore, we demonstrate that input layer dropout or pre-filtering during test time only reduces CNN sensitivity for high levels of degradation. Experiments for fine-grained recognition tasks reveal that VGG19 is more robust to severe image degradations than AlexNet and GoogleNet. However, small intensity noise can lead to dramatic changes in CNN performance even for VGG19.
In the following paper, we present and discuss challenging applications for fine-grained visual classification (FGVC): biodiversity and species analysis. We not only give details about two challenging new datasets suitable for computer vision research with up to 675 highly similar classes, but also present first results with localized features using convolutional neural networks (CNN). We conclude with a list of challenging new research directions in the area of visual classification for biodiversity research.
In this paper we address the task of recognizing assembly actions as a structure (e.g. a piece of furniture or a toy block tower) is built up from a set of primitive objects. Recognizing the full range of assembly actions requires perception at a level of spatial detail that has not been attempted in the action recognition literature to date. We extend the fine-grained activity recognition setting to address the task of assembly action recognition in its full generality by unifying assembly actions and kinematic structures within a single framework. We use this framework to develop a general method for recognizing assembly actions from observation sequences, along with observation features that take advantage of a spatial assemblys special structure. Finally, we evaluate our method empirically on two application-driven data sources: (1) An IKEA furniture-assembly dataset, and (2) A block-building dataset. On the first, our system recognizes assembly actions with an average framewise accuracy of 70% and an average normalized edit distance of 10%. On the second, which requires fine-grained geometric reasoning to distinguish between assemblies, our system attains an average normalized edit distance of 23% -- a relative improvement of 69% over prior work.
Labeling objects at a subordinate level typically requires expert knowledge, which is not always available when using random annotators. As such, learning directly from web images for fine-grained recognition has attracted broad attention. However, the presence of label noise and hard examples in web images are two obstacles for training robust fine-grained recognition models. Therefore, in this paper, we propose a novel approach for removing irrelevant samples from real-world web images during training, while employing useful hard examples to update the network. Thus, our approach can alleviate the harmful effects of irrelevant noisy web images and hard examples to achieve better performance. Extensive experiments on three commonly used fine-grained datasets demonstrate that our approach is far superior to current state-of-the-art web-supervised methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا