Do you want to publish a course? Click here

Issues and Opportunities in Exotic Hadrons

117   0   0.0 ( 0 )
 Added by Eric S. Swanson
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning heavy exotic hadrons is presented.



rate research

Read More

277 - Tetsuo Hyodo 2008
We explore a possibility to generate exotic hadrons dynamically in the scattering of hadrons. The s-wave scattering amplitude of an arbitrary hadron with the Nambu-Goldstone boson is constructed so as to satisfy the unitarity condition and the chiral low energy theorem. We find that the chiral interaction for the exotic channels is in most cases repulsive, and that the strength of the possible attractive interaction is uniquely determined. We show that the attractive interaction in exotic channels is not strong enough to generate a bound state, while the interaction in nonexotic channel generate bound states which are considered to be the origin of some resonances observed in nature.
In the past decade, exotic hadrons with charm and bottom flavors have been extensively studied both in experiments and in theories. In this review, we provide topical discussions by selecting $X,Y,Z$ particles, to which Belle has made important contributions. These are $X(3872)$, $Y(4260)$, $Z_c(4430)^+$, $Z_c(3900)^+$, $Z_{b}(10610)^+$ and $Z_{b}(10650)^+$. Based on the current experimental observations, we discuss those states with emphasis on hadronic molecule whose dynamics is governed by chiral symmetry and heavy-quark symmetry of QCD. We also mention briefly various interpretations and some theoretical predictions for the yet undiscovered exotic hadrons.
Hadron spectroscopy provides direct physical measurements that shed light on the non-perturbative behavior of quantum chromodynamics (QCD). In particular, various exotic hadrons such as the newly observed $T_{cc}^+$ by the LHCb collaboration, offer unique insights on the QCD dynamics in hadron structures. In this letter, we demonstrate how heavy ion collisions can serve as a powerful venue for hadron spectroscopy study of doubly charmed exotic hadrons by virtue of the extremely charm-rich environment created in such collisions. The yields of $T_{cc}^+$ as well as its potential isospin partners are computed within the molecular picture for Pb-Pb collisions at center-of-mass energy $2.76~mathrm{TeV}$. We find about three-order-of-magnitude enhancement in the production of $T_{cc}^+$ in Pb-Pb collisions as compared with the yield in proton-proton collisions, with a moderately smaller enhancement in the yields of the isospin partners $T_{cc}^0$ and $T_{cc}^{++}$. The $T_{cc}^+$ yield is comparable to that of the $X(3872)$ in the most central collisions while shows a considerably stronger decrease toward peripheral collisions, due to a threshold effect of the required double charm quarks for $T_{cc}^+$. Final results for their rapidity and transverse momentum $p_T$ dependence as well as the elliptic flow coefficient are reported and can be tested by future experimental measurements.
71 - A. Ramos , A. Feijoo , Q. Llorens 2020
The exciting discovery by LHCb of the $P_c(4312)^+$ and $P_c(4450)^+$ pentaquarks, or the suggestion of a tetraquark nature for the $Z_c(3900)$ state seen at BESIII and Belle, have triggered a lot of activity in the field of hadron physics, with new experiments planned for searching other exotic mesons and baryons, and many theoretical developments trying to disentangle the true multiquark nature from their possible molecular origin. After a brief review of the present status of these searches, this paper focusses on recently seen or yet to be discovered exotic heavy baryons that may emerge from a conveniently unitarized meson-baryon interaction model in coupled channels. In particular, we will show how interferences between the different coupled-channel amplitudes of the model may reveal the existence of a $N^*$ resonance around 2 GeV having a meson-baryon quasi-bound state nature. We also discuss the possible interpretation of some of the $Omega_c$ states recently discovered at LHCb as being hadron molecules. The model also predicts the existence of doubly-charmed quasibound meson-baryon $Xi_{cc}$ states, which would be excited states of the ground-state $Xi_{cc}(3621)$ MeV, whose mass has only been recently established. Extensions of these results to the bottom sector will also be presented.
121 - Tetsuo Hyodo YITP 2007
We study the exotic hadrons in s-wave scattering of the Nambu-Goldstone boson with a target hadron based on chiral dynamics. Utilizing the low energy theorem of chiral symmetry, we show that the s-wave interaction is not strong enough to generate bound states in exotic channels in flavor SU(3) symmetric limit, although the interaction is responsible for generating some nonexotic hadron resonances dynamically. We discuss the renormalization condition adopted in this analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا