Do you want to publish a course? Click here

On the properties of the interstellar medium in extremely metal-poor blue compact dwarf galaxies. A VIMOS-IFU study of the cometary galaxy and Ly $alpha$ absorber Tol 65

79   0   0.0 ( 0 )
 Added by Patricio Lagos
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study we present high-resolution VIsible Multi-Object Spectrograph integral field unit spectroscopy (VIMOS-IFU) of the extremely metal-poor HII/blue compact dwarf (BCD) galaxy Tol 65. The optical appearance of this galaxy shows clearly a cometary morphology with a bright main body and an extended and diffuse stellar tail. We focus on the detection of metallicity gradients or inhomogeneities as expected if the ongoing star-formation activity is sustained by the infall/accretion of metal-poor gas. No evidences of significant spatial variations of abundances were found within our uncertainties. However, our findings show a slight anticorrelation between gas metallicity and star-formation rate at spaxel scales, in the sense that high star-formation is found in regions of low-metallicity, but the scatter in this relation indicates that the metals are almost fully diluted. Our observations show the presence of extended H$alpha$ emission in the stellar tail of the galaxy. We estimated that the mass of the ionized gas in the tail M(HII)$_{tail} sim$1.7$times$10$^5$ M$_{odot}$ corresponds with $sim$ 24 per cent of the total mass of the ionized gas in the galaxy. We found that the H$alpha$ velocity dispersion of the main body and the tail of the galaxy are comparable with the one found in the neutral gas by previous studies. This suggests that the ionized gas still retains the kinematic memory of its parental cloud and likely a common origin. Finally, we suggest that the infall/accretion of cold gas from the outskirts of the galaxy and/or minor merger/interaction may have produced the almost flat abundance gradient and the cometary morphology in Tol 65.



rate research

Read More

We present high-quality Keck telescope spectroscopic observations of the two metal-deficient blue compact dwarf (BCD) galaxies Tol 1214-277 and Tol 65. These data are used to derive the heavy-element and helium abundances. We find that the oxygen abundances in Tol 1214-277 and Tol 65 are the same, 12+logO/H=7.54+/-0.01, or Zsun/24, despite the different ionization conditions in these galaxies. The nitrogen-to-oxygen abundance ratio in both galaxies is logN/O=-1.64+/-0.02 and lies in the narrow range found for the other most metal-deficient BCDs. We use the five strongest HeI emission lines 3889, 4471, 5876, 6678 and 7065, to correct self-consistently their intensities for collisional and fluorescent enhancement mechanisms and to derive the He abundance. Underlying stellar absorption is found to be important for the HeI 4471 emission line in both galaxies, being larger in Tol 65. The weighted He mass fractions in Tol 1214-277 and Tol 65 are respectively Y=0.2458+/-0.0039 and 0.2410+/-0.0050 when the three HeI emission lines, 4471, 5876 and 6678, are used, and are, respectively, 0.2466+/-0.0043 and 0.2463+/-0.0057 when the HeI 4471 emission line is excluded. These values are in very good agreement with recent measurements of the He mass fraction in others of the most metal-deficient BCDs by Izotov and coworkers. We find that the combined effect of the systematic uncertainties due to the underlying HeI stellar absorption lines, ionization and temperature structure of the HII region and collisional excitation of the hydrogen emission lines is likely small, not exceeding ~2% (the error is 2sigma). Our results support the validity of the standard big bang model of nucleosynthesis.
45 - Y. I. Izotov 2004
We present VLT spectroscopic observations with different spectral resolutions and different slit orientations of the two metal-deficient blue compact dwarf (BCD) galaxies Tol 1214-277 and Tol 65. The oxygen abundances in the brightest HII regions of Tol 1214-277 and Tol 65 are found to be 12+log O/H = 7.55+/-0.01 and 7.54+/-0.01, or Zsun/24. The nitrogen-to-oxygen abundance ratios in the two galaxies are log N/O =-1.64+/-0.03 and -1.60+/-0.02 and lie in the narrow range found for other most metal-deficient BCDs. The helium mass fraction derived in several HII regions in both galaxies is consistent with a high primordial helium mass fraction, Yp ~ 0.244. We confirm the detection of the high-ionization forbidden emission line [FeV]4227 in the spectrum of Tol 1214-277. Additionally, weak [NeIV]4725, [FeVI]5146, 5177, and [FeVII]5721, 6087 emission lines are detected in the high-resolution spectrum of Tol 1214-277. The detection of these lines implies the presence of hard radiation with photon energy in the range ~ 4-8 Ryd. Emission lines are detected in the spectra of eight galaxies in the fields of Tol 1214-277 and Tol 65. Seven of these galaxies are background objects, while one galaxy has a redshift close to that of Tol 1214-277. Situated at a projected distance of ~ 14.5 kpc from Tol 1214-277, this galaxy is probably a companion of the BCD.
104 - T. X. Thuan 2016
We have obtained new HI observations with the 100m Green Bank Telescope (GBT) for a sample of 29 extremely metal-deficient star-forming Blue Compact Dwarf (BCD) galaxies, selected from the Sloan Digital Sky Survey spectral data base to be extremely metal-deficient (12+logO/H<7.6). Neutral hydrogen was detected in 28 galaxies, a 97% detection rate. Combining the HI data with SDSS optical spectra for the BCD sample and adding complementary galaxy samples from the literature to extend the metallicity and mass ranges, we have studied how the HI content of a galaxy varies with various global galaxian properties. There is a clear trend of increasing gas mass fraction with decreasing metallicity, mass and luminosity. We obtain the relation M(HI)/L(g)~L(g)^{-0.3}, in agreement with previous studies based on samples with a smaller luminosity range. The median gas mass fraction f(gas) for the GBT sample is equal to 0.94 while the mean gas mass fraction is 0.90+/-0.15, with a lower limit of ~0.65. The HI depletion time is independent of metallicity, with a large scatter around the median value of 3.4 Gyr. The ratio of the baryonic mass to the dynamical mass of the metal-deficient BCDs varies from 0.05 to 0.80, with a median value of ~0.2. About 65% of the BCDs in our sample have an effective yield larger than the true yield, implying that the neutral gas envelope in BCDs is more metal-deficient by a factor of 1.5-20, as compared to the ionized gas.
We report the discovery of 31 low-luminosity (-14.5 > M_{AB}(B) > -18.8), extreme emission line galaxies (EELGs) at 0.2 < z < 0.9 identified by their unusually high rest-frame equivalent widths (100 < EW[OIII] < 1700 A) as part of the VIMOS Ultra Deep Survey (VUDS). VIMOS optical spectra of unprecedented sensitivity ($I_{AB}$ ~ 25 mag) along with multiwavelength photometry and HST imaging are used to investigate spectrophotometric properties of this unique sample and explore, for the first time, the very low stellar mass end (M* < 10^8 M$_{odot}$) of the luminosity-metallicity (LZR) and mass-metallicity (MZR) relations at z < 1. Characterized by their extreme compactness (R50 < 1 kpc), low stellar mass and enhanced specific star formation rates (SFR/M* ~ 10^{-9} - 10^{-7} yr^{-1}), the VUDS EELGs are blue dwarf galaxies likely experiencing the first stages of a vigorous galaxy-wide starburst. Using T_e-sensitive direct and strong-line methods, we find that VUDS EELGs are low-metallicity (7.5 < 12+log(O/H) < 8.3) galaxies with high ionization conditions, including at least three EELGs showing HeII 4686A emission and four EELGs of extremely metal-poor (<10% solar) galaxies. The LZR and MZR followed by EELGs show relatively large scatter, being broadly consistent with the extrapolation toward low luminosity and mass from previous studies at similar redshift. However, we find evidences that galaxies with younger and more vigorous star formation -- as characterized by their larger EWs, ionization and sSFR -- tend to be more metal-poor at a given stellar mass.
129 - T. X. Thuan , F. E. Bauer (2 , 3 2014
We present XMM-Newton and Chandra observations of two low-metallicity cometary blue compact dwarf (BCD) galaxies, Mrk 59 and Mrk 71. The first BCD, Mrk 59, contains two ultraluminous X-ray (ULX) sources, IXO 72 and IXO 73, both associated with bright massive stars and H II complexes, as well as one fainter extended source associated with a massive H II complex at the head of the cometary structure. The low-metallicity of Mrk 59 appears to be responsible for the presence of the two ULXs. IXO 72 has varied little over the last 10 yr, while IXO 73 has demonstrated a variability factor of ~4 over the same period. The second BCD, Mrk 71, contains two faint X-ray point sources and two faint extended sources. One point source is likely a background AGN, while the other appears to be coincident with a very luminous star and a compact H II region at the head of the cometary structure. The two faint extended sources are also associated with massive H II complexes. Although both BCDs have the same metallicity, the three sources in Mrk 71 have X-ray luminosities ~1-2 orders of magnitude fainter than those in Mrk 59. The age of the starburst may play a role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا