Do you want to publish a course? Click here

Bounded tiles in $mathbb{Q}_p$ are compact open sets

105   0   0.0 ( 0 )
 Added by Shilei Fan
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Any bounded tile of the field $mathbb{Q}_p$ of $p$-adic numbers is a compact open set up to a zero Haar measure set. In this note, we give a simple and direct proof of this fact.



rate research

Read More

80 - Aihua Fan , Shilei Fan , Ruxi Shi 2015
In this article, we prove that a compact open set in the field $mathbb{Q}_p$ of $p$-adic numbers is a spectral set if and only if it tiles $mathbb{Q}_p$ by translation, and also if and only if it is $p$-homogeneous which is easy to check. We also characterize spectral sets in $mathbb{Z}/p^n mathbb{Z}$ ($pge 2$ prime, $nge 1$ integer) by tiling property and also by homogeneity. Moreover, we construct a class of singular spectral measures in $mathbb{Q}_p$, some of which are self-similar measures.
173 - Yiwen Ding 2019
We prove automorphy lifting results for certain essentially conjugate self-dual $p$-adic Galois representations $rho$ over CM imaginary fields $F$, which satisfy in particular that $p$ splits in $F$, and that the restriction of $rho$ on any decomposition group above $p$ is reducible with all the Jordan-Holder factors of dimension at most $2$. We also show some results on Breuils locally analytic socle conjecture in certain non-trianguline case. The main results are obtained by establishing an $R=mathbb{T}$-type result over the $mathrm{GL}_2(mathbb{Q}_p)$-ordinary families considered by Breuil-Ding.
This is the sequel to arXiv:2007.01364v1. Let $F$ be any local field with residue characteristic $p>0$, and $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$ be the mod $p$ pro-$p$-Iwahori Hecke algebra of $mathbf{GL_2}(F)$. In arXiv:2007.01364v1 we have constructed a parametrization of the $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$-modules by certain $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-Satake parameters, together with an antispherical family of $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$-modules. Here we let $F=mathbb{Q}_p$ (and $pgeq 5$) and construct a morphism from $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-Satake parameters to $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-Langlands parameters. As a result, we get a version in families of Breuils semisimple mod $p$ Langlands correspondence for $mathbf{GL_2}(mathbb{Q}_p)$ and of Pav{s}k={u}nas parametrization of blocks of the category of mod $p$ locally admissible smooth representations of $mathbf{GL_2}(mathbb{Q}_p)$ having a central character. The formulation of these results is possible thanks to the Emerton-Gee moduli space of semisimple $widehat{mathbf{GL_2}}(overline{mathbb{F}}_p)$-representations of the Galois group ${rm Gal}(overline{mathbb{Q}}_p/ mathbb{Q}_p)$.
348 - Yiwen Ding 2015
We study some closed rigid subspaces of the eigenvarieties, constructed by using the Jacquet-Emerton functor for parabolic non-Borel subgroups. As an application (and motivation), we prove some new results on Breuils locally analytic socle conjecture for $mathrm{GL}_n(mathbb{Q}_p)$.
Fugledes conjecture in $mathbb{Q}_p$ is proved. That is to say, a Borel set of positive and finite Haar measure in $mathbb{Q}_p$ is a spectral set if and only if it tiles $mathbb{Q}_p$ by translation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا