Do you want to publish a course? Click here

The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

70   0   0.0 ( 0 )
 Added by Alvaro Hacar
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Filaments play a central role in the molecular clouds evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in $^{13}$CO and C$^{18}$O (2--1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its $sim$6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e., $sigma_{NT}/c_slesssim1$) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the ISM. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larsons velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales.



rate research

Read More

Context. Dense molecular filaments are ubiquituous in the interstellar medium, yet their internal physical conditions and formation mechanism remain debated. Aims. We study the kinematics and physical conditions in the Musca filament and the Chamaeleon-Musca complex to constrain the physics of filament formation. Methods. We produced CO(2-1) isotopologue maps with the APEX telescope that cut through the Musca filament. We further study a NANTEN2 $^{12}$CO(1-0) map of the Musca cloud and the HI emission of the Chamaeleon-Musca complex. Results. The Musca cloud contains multiple velocity components. Radiative transfer modelling of the CO emission indicates that the Musca filament consists of a cold ($sim$10 K), dense (n$_{H_2}sim$10$^4$ cm$^{-3}$) crest, which is best described with a cylindrical geometry. Connected to the crest, a separate gas component at T$sim$15 K and n$_{H_2}sim$10$^3$ cm$^{-3}$ is found, the so-called strands. The filament crest has a transverse velocity gradient that is linked to the kinematics of the nearby ambient cloud. Studying the large scale kinematics, we find coherence of the asymmetric kinematics from the 50 pc HI cloud down to the Musca filament. We also report a strong [C$^{18}$O]/[$^{13}$CO] abundance drop by an order of magnitude from the filament crest to the strands over a distance $<$ 0.2 pc in a weak far-ultraviolet (FUV) field. Conclusions. The dense Musca filament crest is a long-lived (several crossing times), dynamic structure that can form stars in the near future because of continuous mass accretion. This mass accretion appears to be triggered by a HI cloud-cloud collision, which bends the magnetic field around dense filaments. This bending of the magnetic field is then responsible for the observed asymmetric accretion scenario of the Musca filament, which is, for instance, seen as a V-shape in the position-velocity (PV) diagram.
Observations with the Herschel Space Telescope have established that most of the star forming gas is organised in interstellar filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the $^{12}$CO(4-3), $^{12}$CO(3-2), and various CO(2-1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C II] line at 158 $mu$m and the [O I] line at 63 $mu$m, observed with the upGREAT receiver on SOFIA, as well as a weak [C I] 609 $mu$m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.
We present the results of mapping observations toward a nearby starless filamentary cloud, the Taurus Molecular Cloud 1 (TMC-1), in the CCS(JN=43-32, 45.379033 GHz) emission line, using the Nobeyama 45-m telescope. The map shows that the TMC-1 filament has a diameter of ~0.1 pc and a length of ~0.5 pc at a distance of 140 pc. The position-velocity diagrams of CCS clearly indicate the existence of velocity-coherent substructures in the filament. We identify 21 substructures that are coherent in the position-position-velocity space by eye. Most of the substructures are elongated along the major axis of the TMC-1 filament. The line densities of the subfilaments are close to the critical line density for the equilibrium (~17 Mo/pc for the excitation temperature of 10 K), suggesting that self-gravity should play an important role in the dynamics of the subfilaments.
Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California molecular cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of this molecular filament and physical properties of several dozens of dense molecular clumps embedded therein. Methods. We present and compare molecular line emission observations of the J=2--1 and J=3--2 transitions of 12CO in this molecular complex, using the KOSMA 3-meter telescope. These observations are complemented with archival data observations and analyses of the 13CO J=1--0 emission obtained at the Purple Mountain Observatory 13.7-meter radio telescope at Delingha Station in QingHai Province of west China, as well as infrared emission maps from the Herschel Space Telescope online archive, obtained with the SPIRE and PACS cameras. Comparison of these complementary datasets allow for a comprehensive multi-wavelength analysis of the L1482 molecular filament. Results. We have identified 23 clumps along the molecular filament L1482 in the California molecular cloud. All these molecular clumps show supersonic non-thermal gas motions. While surprisingly similar in mass and size to the much better known Orion molecular cloud, the formation rate of high-mass stars appears to be suppressed in the California molecular cloud relative to that in the Orion molecular cloud based on the mass-radius threshold derived from the static Bonnor Ebert sphere. Our analysis suggests that these molecular filaments are thermally supercritical and molecular clumps may form by gravitational fragmentation along the filament. Instead of being static, these molecular clumps are most likely in processes of dynamic evolution.
We analyze the gas mass distribution, the gas kinematics, and the young stellar object (YSO) content of the California Molecular Cloud (CMC) L1482 filament. We derive a Gaia DR2 YSO distance of 511$^{+17}_{-16}$ pc. We derive scale-free power-laws for the mean gas line-mass (M/L) profiles; we calculate the gravitational potential and field profiles consistent with these. We present IRAM 30 m C$^{18}$O (1-0) (and other tracers) position-velocity (PV) diagrams that exhibit complex velocity twisting and turning structures. We find a rotational profile in C$^{18}$O perpendicular to the southern filament ridgeline. The profile is regular, confined ($rlesssim0.4$ pc), anti-symmetric, and to first order linear with a break at $rsim0.25$ pc. The timescales of the inner (outer) gradients are $sim$0.7 (6.0) Myr. We show that the centripetal force, compared to gravity, increases toward the break; when the ratio of forces approaches unity, the profile turns over, just before filament breakup is achieved. The timescales and relative roles of gravity to rotation indicate that the structure is stable, long lived ($sim$ a few times 6 Myr), and undergoing outside-in evolution. Moreover, this filament has practically no star formation, a perpendicular Planck plane-of-the-sky (POS) magnetic field morphology, and POS zig-zag morphology, which together with the rotation profile lead to the suggestion that the 3D shape is a corkscrew filament with a helical magnetic field. These results, combined with results in Orion and G035.39-00.33, suggest evolution toward higher densities as rotating filaments shed angular momentum. Thus, magnetic fields may be an essential feature of high-mass (M $sim10^5$ M$_{odot}$) cloud filament evolution toward cluster formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا