No Arabic abstract
Monolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for opto-electronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQWs) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS2 and MoSe2-based LEQWs shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications. Here we compare MoSe2 and WSe2 LEQWs. We show that the EQE of WSe2 devices grows with temperature, with room temperature EQE reaching 5%, which is 250x more than the previous best performance of MoS2 and MoSe2 quantum wells in ambient conditions. We attribute such a different temperature dependences to the inverted sign of spin-orbit splitting of conduction band states in tungsten and molybdenum dichalcogenides, which makes the lowest-energy exciton in WSe2 dark.
In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicons indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs.
We have realized ambipolar ionic liquid gated field-effect transistors based on WS2 mono- and bilayers, and investigated their opto-electronic response. A thorough characterization of the transport properties demonstrates the high quality of these devices for both electron and hole accumulation, which enables the quantitative determination of the band gap ({Delta}1L = 2.14 eV for monolayers and {Delta}2L = 1.82 eV for bilayers). It also enables the operation of the transistors in the ambipolar injection regime with electrons and holes injected simultaneously at the two opposite contacts of the devices in which we observe light emission from the FET channel. A quantitative analysis of the spectral properties of the emitted light, together with a comparison with the band gap values obtained from transport, show the internal consistency of our results and allow a quantitative estimate of the excitonic binding energies to be made. Our results demonstrate the power of ionic liquid gating in combination with nanoelectronic systems, as well as the compatibility of this technique with optical measurements on semiconducting transition metal dichalcogenides. These findings further open the way to the investigation of the optical properties of these systems in a carrier density range much broader than that explored until now.
Valley degree of freedom in the 2D semiconductor is a promising platform for the next generation optoelectronics. Electrons in different valleys can have opposite Berry curvature, leading to the valley Hall effect (VHE). However, VHE without the plasmonic structures assistance has only been reported in cryogenic temperature, limiting its practical application. Here, we report the observation of VHE at room temperature in the MoS2/WSe2 heterostructures. We also uncover that both the magnitude and the polarity of the VHE in the 2D heterostructure is gate tunable. We attribute this to the opposite VHE contribution from the electron and hole in different layers. These results indicate the bipolar transport nature of our valleytronic transistor. Utilizing this gate tunability, we demonstrate a bipolar valleytronic transistor. Our results can be used to improve the ON/OFF ratio of the valleytronic transistor and to realize more versatile valleytronics logic circuits.
In monolayer transition metal dichalcogenides, quantum emitters are associated with localized strain that can be deterministically applied to create designer nano-arrays of single photon sources. Despite an overwhelming empirical correlation with local strain, the nanoscale interplay between strain, excitons, defects and local crystalline structure that gives rise to these quantum emitters is poorly understood. Here, we combine room-temperature nano-optical imaging and spectroscopy of excitons in nanobubbles of localized strain in monolayer WSe2 with atomistic structural models to elucidate how strain induces nanoscale confinement potentials that give rise to highly localized exciton states in 2D semiconductors. Nano-optical imaging of nanobubbles in low-defect monolayers reveal localized excitons on length scales of approximately 10 nm at multiple sites along the periphery of individual nanobubbles, which is in stark contrast to predictions of continuum models of strain. These results agree with theoretical confinement potentials that are atomistically derived from measured topographies of existing nanobubbles. Our results provide one-of-a-kind experimental and theoretical insight of how strain-induced confinement - without crystalline defects - can efficiently localize excitons on length scales commensurate with exciton size, providing key nanoscale structure-property information for quantum emitter phenomena in monolayer WSe2.
The unique optoelectronic properties of graphene [1] make it an ideal platform for a variety of photonic applications [2], including fast photodetectors [3], transparent electrodes [4], optical modulators [5], and ultra-fast lasers [6]. Owing to its high carrier mobility, gapless spectrum, and frequency-independent absorption coefficient, it has been recognized as a very promising element for the development of detectors and modulators operating in the Terahertz (THz) region of the electromagnetic spectrum (wavelengths in the hundreds of micrometers range), which is still severely lacking in terms of solid-state devices. Here we demonstrate efficient THz detectors based on antenna-coupled graphene field-effect transistors (FETs). These exploit the non-linear FET response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature (RT) operation at 0.3 THz, with noise equivalent power (NEP) levels < 30 nW/Hz^(1/2), showing that our devices are well beyond a proof-of-concept phase and can already be used in a realistic setting, enabling large area, fast imaging of macroscopic samples.