Do you want to publish a course? Click here

Relative Tate Objects and Boundary Maps in the K-Theory of Coherent Sheaves

81   0   0.0 ( 0 )
 Added by Jesse Wolfson
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the properties of relative analogues of admissible Ind, Pro, and elementary Tate objects for pairs of exact categories, and give criteria for those categories to be abelian. A relative index map is introduced, and as an application we deduce a description for boundary morphisms in the K-theory of coherent sheaves on Noetherian schemes.



rate research

Read More

We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms of its Picard group $operatorname{Pic}(X)$ and pointed monoid of regular functions $Gamma(X, mathcal{O}_X)$ and a description of the Grothendieck-Witt space of $X$ in terms of an additional involution on $operatorname{Pic}(X)$. We also prove space-level projective bundle formulae in both settings.
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
84 - Po Hu , Igor Kriz , Petr Somberg 2018
Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for $G=(mathbb{Z}/2)^n$ was completely calculated by Bruner and Greenlees. In this note, we essentially redo the calculation by a different, more elementary method, and we extend it to $p>2$ prime. We also identify the resulting spectra, which are products of Eilenberg-Mac Lane spectra, and finitely many finite Postnikov towers. For $p=2$, we also reconcile our answer completely with the result of Bruner and Greenlees, which is in a different form, and hence the comparison involves some non-trivial combinatorics.
174 - George Raptis 2019
We show that the Waldhausen trace map $mathrm{Tr}_X colon A(X) to QX_+$, which defines a natural splitting map from the algebraic $K$-theory of spaces to stable homotopy, is natural up to emph{weak} homotopy with respect to transfer maps in algebraic $K$-theory and Becker-Gottlieb transfer maps respectively.
For $Gamma$ a relatively hyperbolic group, we construct a model for the universal space among $Gamma$-spaces with isotropy on the family VC of virtually cyclic subgroups of $Gamma$. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in $O^+(n,1)= iso(mathbb H^n)$. We use the information we obtain to explicitly compute the lower algebraic K-theory of the Coxeter group $gt$ (a non-uniform lattice in $O^+(3,1)$). Part of this computation involves calculating certain Waldhausen Nil-groups for $mathbb Z[D_2]$, $mathbb Z[D_3]$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا