Do you want to publish a course? Click here

Scale invariance of the eta-deformed AdS5 x S5 superstring, T-duality and modified type II equations

79   0   0.0 ( 0 )
 Added by Ben Hoare
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider the ABF background underlying the eta-deformed AdS5 x S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still correspond to UV finite theory on a flat 2d world-sheet, implying that the eta-deformed model is scale invariant. This property follows from the formal relation via T-duality between the eta-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the this background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after the T-duality, to a modification of type II equations from their standard form. We conjecture that the modified equations should follow from kappa-symmetry of the eta-deformed model. All our observations apply also to eta-deformations of AdS3 x S3 and AdS2 x S2 models.



rate research

Read More

A superspace formulation of type II superstring background with manifest T-duality symmetry is presented. This manifestly T-dual formulation is constructed in a space spanned by two sets of nondegenerate super-Poincare algebra. Supertorsion constraints are obtained from consistency of the kappa-symmetric Virasoro constraints. All superconnections and vielbein fields are solved in terms of a prepotential which is one of the vielbein components. AdS5xS5 background is explained in this formulation.
We show that the supermembrane theory compactified on a torus is invariant under T-duality. There are two different topological sectors of the compactified supermembrane (M2) classified according to a vanishing or nonvanishing second cohomology class. We find the explicit T-duality transformation that acts locally on the supermembrane theory and we show that it is an exact symmetry of the theory. We give a global interpretation of the T-duality in terms of bundles. It has a natural description in terms of the cohomology of the base manifold and the homology of the target torus. We show that in the limit when the torus degenerate into a circle and the M2 mass operator restricts to the string-like configurations, the usual closed string T-duality transformation between the type IIA and type IIB mass operators is recovered. Moreover if we just restrict M2 mass operator to string-like configurations but we perform a generalized T-duality we find the SL(2,Z) non-perturbative multiplet of IIA.
77 - Hiroshi Kunitomo 2021
We reconstruct a complete type II superstring field theory with L-infinity structure in a symmetric way concerning the left- and right-moving sectors. Based on the new construction, we show again that the tree-level S-matrix agrees with that obtained using the first-quantization method. Not only is this a simple and elegant reconstruction, but it also enables the action to be mapped to that in the WZW-like superstring field theory, which has not yet been constructed and fills the only gap in the WZW-like formulation.
In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the alpha expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1)_R-preserving amplitudes such as for five gravitons, and for U(1)_R-violating amplitudes such as for one dilaton and four gravitons. At each order in alpha, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D^2 R^5 and D^4 R^5 are found to match those of D^4 R^4 and D^6 R^4, respectively, as required by non-linear supersymmetry. To the next order, a D^6 R^5 effective interaction arises, which is independent of the supersymmetric completion of D^8 R^4, and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D^6 R^5, the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1)_R-violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector.
We show how the brane wrapping rules, recently discovered in closed oriented string theories compactified on tori, are extended to the case of the Type IIA string compactified on K3. To this aim, a crucial role is played by the duality between this theory and the Heterotic string compactified on a four-dimensional torus T^4. We first show how the wrapping rules are applied to the T^4/Z_N orbifold limits of K3 by relating the D0 branes, obtained as D2 branes wrapping two-cycles, to the perturbative BPS states of the Heterotic theory on T^4. The wrapping rules are then extended to the solitonic branes of the Type IIA string, finding agreement with the analogous Heterotic states. Finally, the geometric Type IIA orbifolds are mapped, via T-duality, to non-geometric Type IIB orbifolds, where the wrapping rules are also at work and consistent with string dualities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا