Do you want to publish a course? Click here

Local entropy as a measure for sampling solutions in Constraint Satisfaction Problems

74   0   0.0 ( 0 )
 Added by Carlo Baldassi
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We introduce a novel Entropy-driven Monte Carlo (EdMC) strategy to efficiently sample solutions of random Constraint Satisfaction Problems (CSPs). First, we extend a recent result that, using a large-deviation analysis, shows that the geometry of the space of solutions of the Binary Perceptron Learning Problem (a prototypical CSP), contains regions of very high-density of solutions. Despite being sub-dominant, these regions can be found by optimizing a local entropy measure. Building on these results, we construct a fast solver that relies exclusively on a local entropy estimate, and can be applied to general CSPs. We describe its performance not only for the Perceptron Learning Problem but also for the random $K$-Satisfiabilty Problem (another prototypical CSP with a radically different structure), and show numerically that a simple zero-temperature Metropolis search in the smooth local entropy landscape can reach sub-dominant clusters of optimal solutions in a small number of steps, while standard Simulated Annealing either requires extremely long cooling procedures or just fails. We also discuss how the EdMC can heuristically be made even more efficient for the cases we studied.



rate research

Read More

We study the phase diagram and the algorithmic hardness of the random `locked constraint satisfaction problems, and compare them to the commonly studied non-locked problems like satisfiability of boolean formulas or graph coloring. The special property of the locked problems is that clusters of solutions are isolated points. This simplifies significantly the determination of the phase diagram, which makes the locked problems particularly appealing from the mathematical point of view. On the other hand we show empirically that the clustered phase of these problems is extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. Our results suggest that the easy/hard transition (for currently known algorithms) in the locked problems coincides with the clustering transition. These should thus be regarded as new benchmarks of really hard constraint satisfaction problems.
The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.
100 - Weiming Feng , Kun He , Yitong Yin 2020
We give a Markov chain based algorithm for sampling almost uniform solutions of constraint satisfaction problems (CSPs). Assuming a canonical setting for the Lovasz local lemma, where each constraint is violated by a small number of forbidden local configurations, our sampling algorithm is accurate in a local lemma regime, and the running time is a fixed polynomial whose dependency on $n$ is close to linear, where $n$ is the number of variables. Our main approach is a new technique called state compression, which generalizes the mark/unmark paradigm of Moitra (Moitra, JACM, 2019), and can give fast local-lemma-based sampling algorithms. As concrete applications of our technique, we give the current best almost-uniform samplers for hypergraph colorings and for CNF solutions.
We study the problem of sampling an approximately uniformly random satisfying assignment for atomic constraint satisfaction problems i.e. where each constraint is violated by only one assignment to its variables. Let $p$ denote the maximum probability of violation of any constraint and let $Delta$ denote the maximum degree of the line graph of the constraints. Our main result is a nearly-linear (in the number of variables) time algorithm for this problem, which is valid in a Lovasz local lemma type regime that is considerably less restrictive compared to previous works. In particular, we provide sampling algorithms for the uniform distribution on: (1) $q$-colorings of $k$-uniform hypergraphs with $Delta lesssim q^{(k-4)/3 + o_{q}(1)}.$ The exponent $1/3$ improves the previously best-known $1/7$ in the case $q, Delta = O(1)$ [Jain, Pham, Vuong; arXiv, 2020] and $1/9$ in the general case [Feng, He, Yin; STOC 2021]. (2) Satisfying assignments of Boolean $k$-CNF formulas with $Delta lesssim 2^{k/5.741}.$ The constant $5.741$ in the exponent improves the previously best-known $7$ in the case $k = O(1)$ [Jain, Pham, Vuong; arXiv, 2020] and $13$ in the general case [Feng, He, Yin; STOC 2021]. (3) Satisfying assignments of general atomic constraint satisfaction problems with $pcdot Delta^{7.043} lesssim 1.$ The constant $7.043$ improves upon the previously best-known constant of $350$ [Feng, He, Yin; STOC 2021]. At the heart of our analysis is a novel information-percolation type argument for showing the rapid mixing of the Glauber dynamics for a carefully constructed projection of the uniform distribution on satisfying assignments. Notably, there is no natural partial order on the space, and we believe that the techniques developed for the analysis may be of independent interest.
Random Constraint Satisfaction Problems exhibit several phase transitions when their density of constraints is varied. One of these threshold phenomena, known as the clustering or dynamic transition, corresponds to a transition for an information theoretic problem called tree reconstruction. In this article we study this threshold for two CSPs, namely the bicoloring of $k$-uniform hypergraphs with a density $alpha$ of constraints, and the $q$-coloring of random graphs with average degree $c$. We show that in the large $k,q$ limit the clustering transition occurs for $alpha = frac{2^{k-1}}{k} (ln k + ln ln k + gamma_{rm d} + o(1))$, $c= q (ln q + ln ln q + gamma_{rm d}+ o(1))$, where $gamma_{rm d}$ is the same constant for both models. We characterize $gamma_{rm d}$ via a functional equation, solve the latter numerically to estimate $gamma_{rm d} approx 0.871$, and obtain an analytic lowerbound $gamma_{rm d} ge 1 + ln (2 (sqrt{2}-1)) approx 0.812$. Our analysis unveils a subtle interplay of the clustering transition with the rigidity (naive reconstruction) threshold that occurs on the same asymptotic scale at $gamma_{rm r}=1$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا