Do you want to publish a course? Click here

Cross-Kerr effect on an optomechanical system

73   0   0.0 ( 0 )
 Added by Wei Xiong
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study cross-Kerr (CK) effect on an optomechanical system driven by two-tone fields. We show that in the presence of the CK effect, a bistable behavior of the mean photon number in the cavity becomes more robust against the fluctuations of the frequency detuning between the cavity mode and the control field. The bistability can also be turned into a tri-stability within the experimentally accessible range of the system parameters. Also, we find that the symmetric profile of the optomechanically induced transparency is broken and the zero-absorption point is shifted in the presence of the CK effect. This shift can be used to measure the strength of the CK effect, and the asymmetric absorption profiles can be employed to engineer a high quality factor of the cavity.



rate research

Read More

184 - Z. R. Gong , H. Ian , Yu-xi Liu 2009
Using the Born-Oppenheimer approximation, we derive an effective Hamiltonian for an optomechanical system that leads to a nonlinear Kerr effect in the systems vacuum. The oscillating mirror at one edge of the optomechanical system induces a squeezing effect in the intensity spectrum of the cavity field. A near-resonant laser field is applied at the other edge to drive the cavity field, in order to enhance the Kerr effect. We also propose a quantum-nondemolition-measurement setup to monitor a system with two cavities separated by a common oscillating mirror, based on our effective Hamiltonian approach.
Few-photon optomechanical effects are not only important physical evidences for understanding the radiation-pressure interaction between photons and mechanical oscillation, but also have wide potential applications in modern quantum technology. Here we study the few-photon optomechanical effects including photon blockade and generation of the Schr{o}dinger cat states under the assistance of a cross-Kerr interaction, which is an inherent interaction accompanied the optomechanical coupling in a generalized optomechanical system. By exactly diagonalizing the generalized optomechanical Hamiltonian and calculating its unitary evolution operator, we find the physical mechanism of the enhancement of photon blockade and single-photon mechanical displacement. The quantum properties in this generalized optomechanical system are studied by investigating the second-order correlation function of the cavity field and calculating the Wigner function and the probability distribution of the rotated quadrature operator for the mechanical mode. We also study the influence of the dissipations on the few-photon optomechanical effects.
We experimentally demonstrate magnon Kerr effect in a cavity-magnon system, where magnons in a small yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional cavity. When the YIG sphere is pumped to generate considerable magnons, the Kerr effect yields a perceptible shift of the cavitys central frequency and more appreciable shifts of the magnon modes. We derive an analytical relation between the magnon frequency shift and the drive power for the uniformly magnetized YIG sphere and find that it agrees very well with the experimental results of the Kittel mode. Our study paves the way to explore nonlinear effects in the cavity-magnon system.
164 - Hao Zhang , Qian Liu , Xu-Sheng Xu 2017
Microwave photons have become very important qubits in quantum communication as the first quantum satellite has been launched successfully. Therefore, it is a necessary and meaningful task for ensuring the high security and efficiency of microwave-based quantum communication in practice. Here, we present an original polarization entanglement purification protocol for nonlocal microwave photons based on the cross-Kerr effect in circuit quantum electrodynamics (QED). Our protocol can solve the problem that the purity of maximally entangled states used for constructing quantum channels will decrease due to decoherence from environment noise. This task is accomplished by means of the polarization parity-check quantum nondemolition (QND) detector, the bit-flipping operation, and the linear microwave elements. The QND detector is composed of several cross-Kerr effect systems which can be realized by coupling two superconducting transmission line resonators to a superconducting molecule with the N-type level structure. We give the applicable experimental parameters of QND measurement system in circuit QED and analyze the fidelities. Our protocol has good applications in long-distance quantum communication assisted by microwave photons in the future, such as satellite quantum communication.
Heisenbergs uncertainty principle results in one of the strangest quantum behaviors: an oscillator can never truly be at rest. Even in its lowest energy state, at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. Resolving these fluctuations using linear position measurements is complicated by the fact that classical noise can masquerade as quantum noise. On the other hand, direct energy detection of the oscillator in its ground state makes it appear motionless. So how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. Exploiting a superconducting qubit as an artificial atom, we measure the photon/phonon-number distributions during these optomechanical interactions. This provides an essential non-linear resource to, first, verify the ground state preparation and second, reveal the quantum vacuum fluctuations of the macroscopic oscillators motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا