Do you want to publish a course? Click here

The NuSTAR Extragalactic Surveys: Overview and Catalog from the COSMOS Field

79   0   0.0 ( 0 )
 Added by Daniel Stern
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

To provide the census of the sources contributing to the X-ray background peak above 10 keV, NuSTAR is performing extragalactic surveys using a three-tier wedding cake approach. We present the NuSTAR survey of the COSMOS field, the medium sensitivity and medium area tier, covering 1.7 deg2 and overlapping with both Chandra and XMM-Newton data. This survey consists of 121 observations for a total exposure of ~3 Ms. To fully exploit these data, we developed a new detection strategy, carefully tested through extensive simulations. The survey sensitivity at 20% completeness is 5.9, 2.9 and 6.4 x 10^-14 erg/cm2/s in the 3-24 keV, 3-8 keV and 8-24 keV bands, respectively. By combining detections in 3 bands, we have a sample of 91 NuSTAR sources with 10^42 -10^45.5 erg/s luminosities and redshift z=0.04-2.5. Thirty two sources are detected in the 8-24 keV band with fluxes ~100 times fainter than sources detected by Swift-BAT. Of the 91 detections, all but four are associated with a Chandra and/or XMM-Newton point-like counterpart. One source is associated with an extended lower energy X-ray source. We present the X-ray (hardness ratio and luminosity) and optical-to-X-ray properties. The observed fraction of candidate Compton-thick AGN measured from the hardness ratio is between 13-20%. We discuss the spectral properties of NuSTAR J100259+0220.6 (ID 330) at z=0.044, with the highest hardness ratio in the entire sample. The measured column density exceeds 10^24 /cm2, implying the source is Compton-thick. This source was not previously recognized as such without the >10 keV data.



rate research

Read More

We present initial results and the source catalog from the NuSTAR survey of the Extended Chandra Deep Field South (hereafter, ECDFS) - currently the deepest contiguous component of the NuSTAR extragalactic survey program. The survey covers the full ~30 arcmin x 30 arcmin area of this field to a maximum depth of ~360 ks (~220 ks when corrected for vignetting at 3-24 keV), reaching sensitivity limits of ~1.3 x 10^-14 erg/cm2/s (3-8 keV), ~3.4 x 10^-14 erg/cm2/s (8-24 keV) and ~3.0 x 10^-14 erg/cm2/s (3-24 keV). Fifty four (54) sources are detected over the full field, although five of these are found to lie below our significance threshold once contaminating flux from neighboring (i.e., blended) sources is taken into account. Of the remaining 49 that are significant, 19 are detected in the 8-24 keV band. The 8-24 keV to 3-8 keV band ratios of the twelve sources that are detected in both bands span the range 0.39-1.7, corresponding to a photon index range of Gamma ~ 0.5-2.3, with a median photon index of 1.70 +/- 0.52. The redshifts of the 49 sources in our main sample span the range z = 0.21-2.7, and their rest-frame 10-40 keV luminosities (derived from the observed 8-24 keV fluxes) span the range L(10-40 keV) ~ (0.7-300) x 10^43 erg/s, sampling below the knee of the X-ray luminosity function out to z ~ 0.8-1. Finally, we identify one NuSTAR source that has neither a Chandra nor an XMM-Newton counterpart, but that shows evidence of nuclear activity at infrared wavelengths, and thus may represent a genuine, new X-ray source detected by NuSTAR in the ECDFS.
We present the results and the source catalog of the NuSTAR survey in the UKIDSS Ultra Deep Survey (UDS) field, bridging the gap in depth and area between NuSTARs ECDFS and COSMOS surveys. The survey covers a $sim 0.6$ deg$^2$ area of the field for a total observing time of $sim$ 1.75 Ms, to a half-area depth of $sim$ 155 ks corrected for vignetting at $3-24$ keV, and reaching sensitivity limits at half-area in the full ($3-24$ keV), soft ($3-8$ keV) and hard ($8-24$ keV) bands of $2.2 times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$, $1.0 times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$, and $2.7 times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$, respectively. A total of 67 sources are detected in at least one of the three bands, 56 of which have a robust optical redshift with a median of $langle zrangle sim 1.1$. Through a broadband ($0.5-24$ keV) spectral analysis of the whole sample combined with the NuSTAR hardness ratios, we compute the observed Compton-thick (CT; $N_{rm H} > 10^{24}$ cm$^{-2}$) fraction. Taking into account the uncertainties on each $N_{rm H}$ measurement, the final number of CT sources is $6.8pm1.2$. This corresponds to an observed CT fraction of $(11.5pm2.0)%$, providing a robust lower limit to the intrinsic fraction of CT AGN and placing constraints on cosmic X-ray background synthesis models.
77 - F. Civano , S. Marchesi 2016
The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg$^2$ of the COSMOS field with an effective exposure of $simeq$160 ks over the central 1.5 deg$^2$ and of $simeq$80 ks in the remaining area. The survey is the combination of 56 new observations, obtained as an X-ray Visionary Project, with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2$times 10^{-5}$. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft and hard band). The limiting depths are 2.2 $times$ 10$^{-16}$, 1.5 $times$ 10$^{-15}$ and 8.9$times$ 10$^{-16}$ ${rm erg~cm}^{-2}~{rm s}^{-1}$ in the 0.5-2, 2-10 and 0.5-10 keV bands, respectively. The observed fraction of obscured AGN with column density $> 10^{22}$ cm$^{-2}$ from the hardness ratio (HR) is $sim$50$^{+17}_{-16}$%. Given the large sample, we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5-10%. For the first time, we compute number counts for obscured (HR$>$-0.2) and unobscured (HR$<$-0.2) sources and find significant differences between the two populations in the soft band. Due to the un-precedent large exposure, COSMOS-Legacy area is 3 times larger than surveys at similar depth and its depth is 3 times fainter than surveys covering similar area. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.
We discuss the spectral analysis of a sample of 63 Active Galactic Nuclei (AGN) detected above a limiting flux of $S(8-24$ keV$)=7times10^{-14}$ erg/s/cm$^2$ in the multi-tiered NuSTAR Extragalactic Survey program. The sources span a redshift range z=0-2.1 (median $langle$z$rangle=$0.58). The spectral analysis is performed over the broad 0.5-24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at $ >10$ keV to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ($N_{rm H}$), reflection parameter ($R$) and 10-40 keV luminosity ($L_{X}$). Heavily obscured ($log [N_{rm H}/cm^{-2}]ge23$) and Compton Thick (CT; $log [N_{rm H}/cm^{-2}]ge24$) AGN constitute $sim$25% (15-17 sources) and $sim$2-3% ( 1-2 sources) of the sample, respectively. The observed $N_{rm H}$ distribution fairly agrees with predictions of Cosmic X-ray Background population synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of $N_{H}$, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to $log [N_{rm H}/cm^{-2}]=20-24$ AGN is poorly constrainted, formally in the range 2-56% (90% upper limit of 66%). We derived a fraction ($f_{abs}$) of obscured AGN ($log [N_{rm H}/cm^{-2}]=22-24$) as a function of $L_{X}$ in agreement with CXBPSM and previous z < 1 X-ray determinations. Furthermore $f_{abs}$ at z=0.1-0.5 and $log (L_{X}/erg$ $s^{-1})approx43.6-44.3$ agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of $R$ with $L_{X}$ (confirmed by our companion paper on stacked spectra) with considerable scatter around the median $R$ values.
Ultracool dwarfs encompass a wide variety of compact stellar-like objects with spectra classified as late-M, L, T and Y. Most of them have been discovered using wide-field imaging surveys. The Virtual Observatory has proven to be of great utility to efficiently exploit these astronomical resources. We aim to validate a Virtual Observatory methodology designed to discover and characterize ultracool dwarfs in deep extragalactic surveys like ALHAMBRA and COSMOS. Three complementary searches based on parallaxes, proper motions and colours, respectively were carried out. A total of 897 candidate ultracool dwarfs were found, with only 16 previously reported in SIMBAD. Most of the new UCDs reported here are likely late-M and L dwarfs because of the limitations imposed by the utilization of optical ($Gaia$ DR2 and r-band) data. We complement ALHAMBRA and COSMOS photometry with other catalogues in the optical and infrared using VOSA, a Virtual Observatory tool that estimates effective temperatures from the spectral energy distribution fitting to collections of theoretical models. The agreement between the number of UCDs found in the COSMOS field and theoretical estimations together with the low false negative rate (known UCDs not discovered in our search) validates the methodology proposed in this work, which will be used in the forthcoming wide and deep surveys provided by the Euclid space mission. Simulations of Euclid number counts for UCDs detectable in different photometric passbands are presented for a wide survey area of 15,000 square degrees, and the limitations of applicability of Euclid data to detect UCDs using the methods employed in this paper are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا