No Arabic abstract
We demonstrate a high-performance apertureless near-field probe made of a tapered metal tip with a set of periodic shallow grooves near the apex. The spontaneous emission from a single emitter near the tip is investigated systematically for the side-illumination tip enhanced spectroscopy (TES). In contrast with the bare tapered metal tip in conventional side-illumination TES, the corrugated probe not only enhances strongly local excitation field but also concentrates the emission directivity, which leads to high collection efficiency and signal-to-noise ratio. In particular, we propose an asymmetric TES tip based on two coupling nanorods with different length at the apex to realize unidirectional enhanced emission rate from a single emitter. Interestingly, we find that the radiation pattern is sensitive to the emission wavelength and the emitter positions respective to the apex, which can result in an increase of signal-to-noise ratio by suppressing undesired signal. The proposed asymmetrical corrugated probe opens up a broad range of practical applications, e.g. increasing the detection efficiency of tip enhanced spectroscopy at the single-molecule level.
Tip-enhanced nano-spectroscopy and -imaging, such as tip-enhanced photoluminescence (TEPL), tip-enhanced Raman spectroscopy (TERS), and others, have become indispensable from materials science to single molecule studies. However, the techniques suffer from inconsistent performance due to lack of nanoscale control of tip apex structure, which often leads to irreproducible spectral, spatial, and polarization resolved imaging. Instead of refining tip-fabrication to resolve this problem, we pursue the inverse approach of optimizing the nano-optical vector-field at the tip apex via adaptive optics. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS, with performance exceeding what can be achieved by conventional tip-fabrication and optimal excitation polarization. Employing a sequence feedback algorithm, we achieve 4.4$times$10$^4$-fold TEPL enhancement of a WSe$_2$ monolayer which is >2$times$ larger than the normal TEPL intensity without wavefront shaping, as well as the largest plasmon-enhanced PL intensity of a transition metal dichalcogenide (TMD) monolayer reported to date. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue (BCB) molecules as well as the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced spectroscopy and imaging thus provides for a new systematic approach towards computational nanoscopy making optical nano-imaging more robust, versatile, and widely deployable.
Coherent anti-Stokes Raman scattering (CARS) and, in particular, femtosecond adaptive spectroscopic techniques (FAST CARS) have been successfully used for molecular spectroscopy and microscopic imaging. Recent progress in ultrafast nanooptics provides flexibility in generation and control of optical near fields, and holds promise to extend CARS techniques to the nanoscale. In this theoretical study, we demonstrate ultrafast subwavelentgh control of coherent Raman spectra of molecules in the vicinity of a plasmonic nanostructure excited by ultrashort laser pulses. The simulated nanostructure design provides localized excitation sources for CARS by focusing incident laser pulses into subwavelength hot spots via two self-similar nanolens antennas connected by a waveguide. Hot-spot-selective dual-tip-enhanced CARS (2TECARS) nanospectra of DNA nucleobases are obtained by simulating optimized pump, Stokes and probe near fields using tips, laser polarization- and pulse-shaping. This technique may be used to explore ultrafast energy and electron transfer dynamics in real space with nanometre resolution and to develop novel approaches to DNA sequencing.
Coupled-resonance spectroscopy has been recently reported and applied for spectroscopic measurements and laser stabilizations. With coupled-resonance spectroscopy, one may indirectly measure some transitions between the excited states that are hard to be measured directly because of the lack of populations in the excited states. An improvement of the coupled-resonance spectroscopy by combining the technology of electromagnetically induced transparency (EIT) is proposed. The coupled-resonance spectroscopy signal can be significantly enhanced by EIT. Several experimental schemes have been discussed. The line shape of the EIT-enhanced coupled-resonance spectroscopy has been calculated.The EIT-enhanced coupled-resonance spectroscopy can be used for simultaneously stabilizing two lasers to the same atomic source.
Broadband ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D spectroscopy, are widely used to study molecular dynamics. However, these techniques are typically restricted to optically thick samples, such as solids and liquid solutions. In this article we discuss a cavity-enhanced ultrafast transient absorption spectrometer covering almost the entire visible range with a detection limit of $Delta$OD $ < 1 times 10^{-9}$, extending broadband all-optical ultrafast spectroscopy techniques to dilute beams of gas-phase molecules and clusters. We describe the technical innovations behind the spectrometer and present transient absorption data on two archetypical molecular systems for excited-state intramolecular proton transfer, 1-hydroxy-2-acetonapthone and salicylideneaniline, under jet-cooled and Ar cluster conditions.
Many classes of two-dimensional (2D) materials have emerged as potential platforms for novel electronic and optical devices. However, the physical properties are strongly influenced by nanoscale heterogeneities in the form of edges, grain boundaries, and nucleation sites. Using combined tip-enhanced Raman scattering (TERS) and photoluminescence (TEPL) nano-spectroscopy and -imaging, we study the associated effects on the excitonic properties in monolayer WSe2 grown by physical vapor deposition (PVD). With <15 nm spatial resolution we resolve nonlocal nanoscale correlations of PL spectral intensity and shifts with crystal edges and internal twin boundaries associated with the expected exciton diffusion length. Through an active atomic force tip interaction we can control the crystal strain on the nanoscale, and tune the local bandgap in reversible (up to 24 meV shift) and irreversible (up to 48 meV shift) fashion. This allows us to distinguish the effect of strain from the dominant influence of defects on the PL modification at the different structural heterogeneities. Hybrid nano-optical and nano-mechanical imaging and spectroscopy thus enables the systematic study of the coupling of structural and mechanical degrees of freedom to the nanoscale electronic and optical properties in layered 2D materials.