Do you want to publish a course? Click here

FPGA-based Trigger System for the LUX Dark Matter Experiment

68   0   0.0 ( 0 )
 Added by Eryk Druszkiewicz
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles. Signals from the detector are processed with an FPGA-based digital trigger system that analyzes the incoming data in real-time, with just a few microsecond latency. The system enables first pass selection of events of interest based on their pulse shape characteristics and 3D localization of the interactions. It has been shown to be >99% efficient in triggering on S2 signals induced by only few extracted liquid electrons. It is continuously and reliably operating since its full underground deployment in early 2013. This document is an overview of the systems capabilities, its inner workings, and its performance.



rate research

Read More

We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170,000 highly pure and spatially-uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 V/cm and 105 V/cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a re-analysis of the LUX Run3 WIMP search.
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$times10^{-12}$,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data.
The Large Underground Xenon experiment (LUX) searches for dark matter using a dual-phase xenon detector. LUX uses a custom-developed trigger system for event selection. In this paper, the trigger efficiency, which is defined as the probability that an event of interest is selected for offline analysis, is studied using raw data obtained from both electron recoil (ER) and nuclear recoil (NR) calibrations. The measured efficiency exceeds 98% at a pulse area of 90 detected photons, which is well below the WIMP analysis threshold on the S2 pulse area. The efficiency also exceeds 98% at recoil energies of mbox{0.2 keV} and above for ER, and mbox{1.3 keV} and above for NR. The measured trigger efficiency varies between 99% and 100% over the fiducial volume of the detector.
The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from ${1.4}times 10^{4};mathrm{kg,days}$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.
An FPGA-based online trigger system has been developed for the COMET Phase-I experiment. This experiment searches for muon-to-electron conversion, which has never been observed yet. A drift chamber and trigger counters detect a mono-energetic electron from the conversion process in a 1-T solenoidal magnetic field. A highly intense muon source is applied to reach unprecedented experimental sensitivity. It also generates undesirable background particles, and a trigger rate due to these particles is expected to be much higher than an acceptable trigger rate in the data acquisition system. By using hit information from the drift chamber too, the online trigger system efficiently suppresses a background trigger rate while keeping signal-event acceptance large. A characteristic of this system is the utilization of the machine learning technique in the form of look-up tables on hardware. An initial simulation study indicates that the signal-event acceptance of the online trigger is 96% while the background trigger rate is reduced from over $90,mathrm{kHz}$ to $13,mathrm{kHz}$. For this scenario, we have produced trigger-related electronics that construct a distributed trigger architecture. The total latency of the trigger system was estimated to be $3.2,mathrm{mu s}$, and the first operation test was carried out by using a part of the drift-chamber readout region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا