Do you want to publish a course? Click here

ABC for climate: dealing with expensive simulators

63   0   0.0 ( 0 )
 Added by Richard Wilkinson
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

This paper is due to appear as a chapter of the forthcoming Handbook of Approximate Bayesian Computation (ABC) by S. Sisson, L. Fan, and M. Beaumont. We describe the challenge of calibrating climate simulators, and discuss the differences in emphasis in climate science compared to many of the more traditional ABC application areas. The primary difficulty is how to do inference with a computationally expensive simulator which we can only afford to run a small number of times, and we describe how Gaussian process emulators are used as surrogate models in this case. We introduce the idea of history matching, which is a non-probabilistic calibration method, which divides the parameter space into (not im)plausible and implausible regions. History matching can be shown to be a special case of ABC, but with a greater emphasis on defining realistic simulator discrepancy bounds, and using these to define tolerances and metrics. We describe a design approach for choosing parameter values at which to run the simulator, and illustrate the approach on a toy climate model, showing that with careful design we can find the plausible region with a very small number of model evaluations. Finally, we describe how calibrated GENIE-1 (an earth system model of intermediate complexity) predictions have been used, and why it is important to accurately characterise parametric uncertainty.



rate research

Read More

In this tutorial we schematically illustrate four algorithms: (1) ABC rejection for parameter estimation (2) ABC SMC for parameter estimation (3) ABC rejection for model selection on the joint space (4) ABC SMC for model selection on the joint space.
For nearly any challenging scientific problem evaluation of the likelihood is problematic if not impossible. Approximate Bayesian computation (ABC) allows us to employ the whole Bayesian formalism to problems where we can use simulations from a model, but cannot evaluate the likelihood directly. When summary statistics of real and simulated data are compared --- rather than the data directly --- information is lost, unless the summary statistics are sufficient. Here we employ an information-theoretical framework that can be used to construct (approximately) sufficient statistics by combining different statistics until the loss of information is minimized. Such sufficient sets of statistics are constructed for both parameter estimation and model selection problems. We apply our approach to a range of illustrative and real-world model selection problems.
The problem of estimating certain distributions over ${0,1}^d$ is considered here. The distribution represents a quantum system of $d$ qubits, where there are non-trivial dependencies between the qubits. A maximum entropy approach is adopted to reconstruct the distribution from exact moments or observed empirical moments. The Robbins Monro algorithm is used to solve the intractable maximum entropy problem, by constructing an unbiased estimator of the un-normalized target with a sequential Monte Carlo sampler at each iteration. In the case of empirical moments, this coincides with a maximum likelihood estimator. A Bayesian formulation is also considered in order to quantify posterior uncertainty. Several approaches are proposed in order to tackle this challenging problem, based on recently developed methodologies. In particular, unbiased estimators of the gradient of the log posterior are constructed and used within a provably convergent Langevin-based Markov chain Monte Carlo method. The methods are illustrated on classically simulated output from quantum simulators.
240 - Han Fu 2021
Health economic evaluations often require predictions of survival rates beyond the follow-up period. Parametric survival models can be more convenient for economic modelling than the Cox model. The generalized gamma (GG) and generalized F (GF) distributions are extensive families that contain almost all commonly used distributions with various hazard shapes and arbitrary complexity. In this study, we present a new SAS macro for implementing a wide variety of flexible parametric models including the GG and GF distributions and their special cases, as well as the Gompertz distribution. Proper custom distributions are also supported. Different from existing SAS procedures, this macro not only supports regression on the location parameter but also on ancillary parameters, which greatly increases model flexibility. In addition, the SAS macro supports weighted regression, stratified regression and robust inference. This study demonstrates with several examples how the SAS macro can be used for flexible survival modeling and extrapolation.
In recent years dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However it is often computationally unfeasible to apply exact statistical methodologies in the context of large datasets and complex models. This paper considers a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An Approximate Bayesian Computation (ABC) MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm uses simulations of subsamples from the assumed data generating model as well as a so-called early rejection strategy to speed up computations in the ABC-MCMC sampler. Using a considerate amount of subsamples does not seem to degrade the quality of the inferential results for the considered applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered setup. Finally the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general and not limited to the exemplified model and data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا