Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method to identify a large and uniform sample of binary AGNs, because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kpc-scale binaries over the 92 deg$^2$ of the Sloan Digital Sky Survey (SDSS) Stripe 82 area with 2-resolution Very Large Array (VLA) images. Here we present 0.3-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line-of-sight projections of radio structures from single AGNs. The four binary AGNs at $z sim 0.1$ reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts have stellar masses between $10.3 < log(M_star/M_odot) < 11.5$ and velocity dispersions between $120 < sigma_star < 320$ km/s. The radio emission is compact ($<$0.4) and show steep spectrum ($-1.8 < alpha < -0.5$) at 6 GHz. The host galaxy properties and the Eddington-scaled accretion rates broadly correlate with the excitation state, similar to the general radio-AGN population at low redshifts. Our estimated binary AGN fraction indicates that simultaneous accretion occurs $>23^{+15}_{-8}$% of the time when a kpc-scale galaxy pair is detectable as a radio-AGN. The high duty cycle of the binary phase strongly suggests that major mergers can trigger and synchronize black hole accretion.