Do you want to publish a course? Click here

A Simple Test of the Equivalence Principle(s) for Quantum Superpositions

90   0   0.0 ( 0 )
 Added by Felix Pollock
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a simple experimental test of the quantum equivalence principle introduced by Zych and Brukner [arXiv:1502.00971], which generalises the Einstein equivalence principle to superpositions of internal energy states. We consider a harmonically-trapped spin-$frac12$ atom in the presence of both gravity and an external magnetic field and show that when the external magnetic field is suddenly switched off, various violations of the equivalence principle would manifest as otherwise forbidden transitions. Performing such an experiment would put bounds on the various phenomenological violating parameters. We further demonstrate that the classical weak equivalence principle can be tested by suddenly putting the apparatus into free fall, effectively switching off gravity.



rate research

Read More

The Einstein Equivalence Principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or Weak Equivalence Principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms. A Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eotvos ratio of atoms in two hyperfine levels with relative uncertainty in the low $10^{-9}$, improving previous results by almost two orders of magnitude.
210 - R. Angelil , P. Saha 2011
The S-Stars in the Galactic-center region are found to be on near-perfect Keplerian orbits around presumably a supermassive black hole, with periods of 15-50 yr. Since these stars reach a few percent of light speed at pericenter, various relativistic effects are expected, and have been discussed in the literature. We argue that an elegant test of the Einstein equivalence principle should be possible with existing instruments, through spectroscopic monitoring of an S-star concentrated during the months around pericenter, supplemented with an already-adequate astrometric determination of the inclination. In essence, the spectrum of an S-star can be considered a heterogeneous ensemble of clocks in a freely-falling frame, which near pericenter is moving at relativistic speeds.
The weak equivalence principle is one of the cornerstone of general relativity. Its validity has been tested with impressive precision in the Solar System, with experiments involving baryonic matter and light. However, on cosmological scales and when dark matter is concerned, the validity of this principle is still unknown. In this paper we construct a null test that probes the validity of the equivalence principle for dark matter. Our test has the strong advantage that it can be applied on data without relying on any modelling of the theory of gravity. It involves a combination of redshift-space distortions and relativistic effects in the galaxy number-count fluctuation, that vanishes if and only if the equivalence principle holds. We show that the null test is very insensitive to typical uncertainties in other cosmological parameters, including the magnification bias parameter, and to non-linear effects, making this a robust null test for modified gravity.
We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earths gravity field of two isotopes of strontium atoms, namely, the bosonic $^{88}$Sr isotope which has no spin vs the fermionic $^{87}$Sr isotope which has a half-integer spin. The effect of gravity upon the two atomic species has been probed by means of a precision differential measurement of the Bloch frequency for the two atomic matter waves in a vertical optical lattice. We obtain the values $eta = (0.2pm 1.6)times10^{-7}$ for the Eotvos parameter and $k=(0.5pm1.1)times10^{-7}$ for the coupling between nuclear spin and gravity. This is the first reported experimental test of the equivalence principle for bosonic and fermionic particles and opens a new way to the search for the predicted spin-gravity coupling effects.
137 - Albert Roura 2015
Atom interferometry tests of universality of free fall based on the differential measurement of two different atomic species provide a useful complement to those based on macroscopic masses. However, when striving for the highest possible sensitivities, gravity gradients pose a serious challenge. Indeed, the relative initial position and velocity for the two species need to be controlled with extremely high accuracy, which can be rather demanding in practice and whose verification may require rather long integration times. Furthermore, in highly sensitive configurations gravity gradients lead to a drastic loss of contrast. These difficulties can be mitigated by employing wave packets with narrower position and momentum widths, but this is ultimately limited by Heisenbergs uncertainty principle. We present a novel scheme that simultaneously overcomes the loss of contrast and the initial co-location problem. In doing so, it circumvents the fundamental limitations due to Heisenbergs uncertainty principle and eases the experimental realization by relaxing the requirements on initial co-location by several orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا