No Arabic abstract
The observational features of the massive galaxy cluster El Gordo (ACT-CL J0102-4915), such as the X-ray emission, the Sunyaev-Zeldovich (SZ) effect, and the surface mass density distribution, indicate that they are caused by an exceptional ongoing high-speed collision of two galaxy clusters, similar to the well-known Bullet Cluster. We perform a series of hydrodynamical simulations to investigate the merging scenario and identify the initial conditions for the collision in ACT-CL J0102-4915. By surveying the parameter space of the various physical quantities that describe the two colliding clusters, including their total mass (M), mass ratio (xi), gas fractions (f_b), initial relative velocity (V), and impact parameter (P), we find out an off-axis merger with P~800h_{70}^{-1}kpc, V~2500km/s, M~3x10^{15}Msun, and xi=3.6 that can lead to most of the main observational features of ACT-CL J0102-4915. Those features include the morphology of the X-ray emission with a remarkable wake-like substructure trailing after the secondary cluster, the X-ray luminosity and the temperature distributions, and also the SZ temperature decrement. The initial relative velocity required for the merger is extremely high and rare compared to that inferred from currently available Lambda cold dark matter (LCDM) cosmological simulations, which raises a potential challenge to the LCDM model, in addition to the case of the Bullet Cluster.
The massive galaxy cluster El Gordo (ACT-CL J0102--4915) is a rare merging system with a high collision speed suggested by multi-wavelength observations and the theoretical modeling. Zhang et al. (2015) propose two types of mergers, a nearly head-on merger and an off-axis merger with a large impact parameter, to reproduce most of the observational features of the cluster, by using numerical simulations. The different merger configurations of the two models result in different gas motion in the simulated clusters. In this paper, we predict the kinetic Sunyaev-Zeldovich (kSZ) effect, the relativistic correction of the thermal Sunyaev-Zeldovich (tSZ) effect, and the X-ray spectrum of this cluster, based on the two proposed models. We find that (1) the amplitudes of the kSZ effect resulting from the two models are both on the order of $Delta T/Tsim10^{-5}$; but their morphologies are different, which trace the different line-of-sight velocity distributions of the systems; (2) the relativistic correction of the tSZ effect around $240 {rm,GHz}$ can be possibly used to constrain the temperature of the hot electrons heated by the shocks; and (3) the shift between the X-ray spectral lines emitted from different regions of the cluster can be significantly different in the two models. The shift and the line broadening can be up to $sim 25{rm,eV}$ and $50{rm,eV}$, respectively. We expect that future observations of the kSZ effect and the X-ray spectral lines (e.g., by ALMA, XARM) will provide a strong constraint on the gas motion and the merger configuration of ACT-CL J0102--4915.
We present 610 MHz and 2.1 GHz imaging of the massive SZE-selected z=0.870 cluster merger ACT-CL J0102-4915 (El Gordo), obtained with the GMRT and the ATCA, respectively. We detect two complexes of radio relics separated by 3.4 (1.6 Mpc) along the systems NW-to-SE collision axis that have high integrated polarizations (33%) and steep spectral indices, consistent with creation via Fermi acceleration by shocks in the ICM. From the spectral index of the relics, we compute a Mach number of 2.5^{+0.7}_{-0.3} and shock speed of 2500^{+400}_{-300} km/s. With our ATCA data, we compute the Faraday depth across the NW relic and find a mean value of 11 rad/m^2 and standard deviation of 6 rad/m^2. With the integrated line-of-sight gas density derived from new Chandra observations, our Faraday depth measurement implies B_parallel~0.01 mu G in the cluster outskirts. The extremely narrow shock widths in the relics (<23 kpc) prevent us from placing a meaningful constraint on |B| using cooling time arguments. In addition to the relics, we detect a large (1.1 Mpc radius), powerful (log L_1.4[W/Hz]= 25.66+-0.12) radio halo with a Bullet-like morphology. The spectral-index map of the halo shows the synchrotron spectrum is flattest near the relics, along the collision axis, and in regions of high T_gas, all locations associated with recent energy injection. The spatial and spectral correlation between the halo emission and cluster X-ray properties supports primary-electron processes like turbulent reacceleration as the halo production mechanism. The halos integrated 610 MHz to 2.1 GHz spectral index is 1.2+-0.1, consistent with the clusters high T_gas in view of previously established global scaling relations. El Gordo is the highest-redshift cluster known to host a radio halo and/or radio relics, and provides new constraints on the non-thermal physics in clusters at z>0.6. [abridged]
We examine the massive colliding cluster El Gordo, one of the most massive clusters at high redshift. We use a free-form lensing reconstruction method that avoids making assumptions about the mass distribution. We use data from the RELICS program and identify new multiply lensed system candidates. The new set of constraints and free-form method provides a new independent mass estimate of this intriguing colliding cluster. Our results are found to be consistent with earlier parametric models, indirectly confirming the assumptions made in earlier work. By fitting a double gNFW profile to the lens model, and extrapolating to the virial radius, we infer a total mass for the cluster of $M_{200c}=(1.08^{+0.65}_{-0.12})times10^{15}$M$_{odot}$. We estimate the uncertainty in the mass due to errors in the photometric redshifts, and discuss the uncertainty in the inferred virial mass due to the extrapolation from the lens model. We also find in our lens map a mass overdensity corresponding to the large cometary tail of hot gas, reinforcing its interpretation as a large tidal feature predicted by hydrodynamical simulations that mimic El Gordo. Finally, we discuss the observed relation between the plasma and the mass map, finding that the peak in the projected mass map may be associated with a large concentration of colder gas, exhibiting possible star formation. El Gordo is one of the first clusters that will be observed with JWST, which is expected to unveil new high redshift lensed galaxies around this interesting cluster, and provide a more accurate estimation of its mass.
The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster El Gordo (ACT-CT J0102-4915; z=0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray bullet leads a twin-tailed wake, with the SZ centroid at the end of the Northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, Sunyaev-Zeldovich (SZ), and Hubble lensing and dynamical data. The X-ray morphology and the location of the two Dark Matter components and the SZ peak are accurately described by a simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ~300 kpc, and a relative initial infall velocity of ~2250 km/sec when separated by the sum of the two virial radii assuming an initial total mass of 2.15x10^(15) Msun and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the Northern X-ray tail along the collision axis between the mass peaks, and that the Southern tail lies off axis, comprising compressed and shock heated gas generated as the massive component plunges through the main cluster. The challenge for LCDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high infall velocity case of the Bullet cluster and other such cases being uncovered in the new SZ based surveys.
Simulations of isolated binary mergers of galaxy clusters are a useful tool to study the evolution of these objects. For exceptionally massive systems they even represent the only viable way of simulation, because these are rare in typical cosmological simulations. We present a new practical model for these simulations based on the Hernquist dark matter profile. The hydrostatic equation is solved for a beta-model with $beta$ = 2/3 in this potential and approximate expressions for X-ray brightness and Compton-y parameter are derived. We show in detail how to setup such a system using SPH. The theoretical and several numerical models are compared to observed scaling relations of galaxy clusters and satisfactory agreement with the self-similar relations is found. The model is then applied to investigate the observed cluster ACT-CT J0102-4915 (El Gordo), a particularly massive merging high redshift cluster. We are able to reproduce the X-ray luminosity, SZ-effect and dark matter core distance as well as the rough shape of the observed cluster for reasonable model parameters. The lack of substruc- ture prevents us from obtaining the fluctuations observed in the wake of the system and we argue that the parent cluster of the system was highly disturbed even before the main merger observed today.