Do you want to publish a course? Click here

The Lockman Hole with LOFAR - Searching for GPS and CSS sources at low frequencies

299   0   0.0 ( 0 )
 Added by Elizabeth Mahony
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Lockman Hole Project is a wide international collaboration aimed at exploiting the multi-band extensive and deep information available for the Lockman Hole region, with the aim of better characterizing the physical and evolutionary properties of the various source populations detected in deep radio fields. Recent observations with the LOw-Frequency ARray (LOFAR) extends the multi-frequency radio information currently available for the Lockman Hole (from 350 MHz up to 15 GHz) down to 150 MHz, allowing us to explore a new radio spectral window for the faint radio source population. These LOFAR observations allow us to study the population of sources with spectral peaks at lower radio frequencies, providing insight into the evolution of GPS and CSS sources. In this general framework, I present preliminary results from 150 MHz LOFAR observations of the Lockman Hole field.



rate research

Read More

The Lockman Hole is a well-studied extragalactic field with extensive multi-band ancillary data covering a wide range in frequency, essential for characterising the physical and evolutionary properties of the various source populations detected in deep radio fields (mainly star-forming galaxies and AGNs). In this paper we present new 150-MHz observations carried out with the LOw Frequency ARray (LOFAR), allowing us to explore a new spectral window for the faint radio source population. This 150-MHz image covers an area of 34.7 square degrees with a resolution of 18.6$times$14.7 arcsec and reaches an rms of 160 $mu$Jy beam$^{-1}$ at the centre of the field. As expected for a low-frequency selected sample, the vast majority of sources exhibit steep spectra, with a median spectral index of $alpha_{150}^{1400}=-0.78pm0.015$. The median spectral index becomes slightly flatter (increasing from $alpha_{150}^{1400}=-0.84$ to $alpha_{150}^{1400}=-0.75$) with decreasing flux density down to $S_{150} sim$10 mJy before flattening out and remaining constant below this flux level. For a bright subset of the 150-MHz selected sample we can trace the spectral properties down to lower frequencies using 60-MHz LOFAR observations, finding tentative evidence for sources to become flatter in spectrum between 60 and 150 MHz. Using the deep, multi-frequency data available in the Lockman Hole, we identify a sample of 100 Ultra-steep spectrum (USS) sources and 13 peaked spectrum sources. We estimate that up to 21 percent of these could have $z>4$ and are candidate high-$z$ radio galaxies, but further follow-up observations are required to confirm the physical nature of these objects.
Many X-ray observations of GigaHertz Peaked Spectrum and Compact Steep Spectrum sources have been made with Chandra X-ray Observatory and XMM-Newton Observatory over the last few years. The X-ray spectra contribute the important information to the total energy distribution of the compact radio sources. In addition the spatial resolution of Chandra allows for studies of the X-ray morphology of these sources on arcsec scales and provide a direct view of their environments. This paper gives a review of the current status of the X-ray observations and their contribution to our understanding of the nature of these compact radio sources. It also describes primary physical processes that lead to the observed X-ray emission and summarize X-ray emission properties expected from interactions between an expanding radio source and the intergalactic environment.
113 - I.A.G. Snellen 2008
A short overview is given of the status of research on young extragalactic radio sources. We concentrate on Very Long Baseline Interferometric (VLBI), and space-VLBI results obtained with the VLBI Space Observatory Programme (VSOP). In 2012, VSOP-2 will be launched, which will allow VLBI observations at an unprecedented angular resolution. One particular question VSOP-2 could answer is whether some of the High Frequency Peakers (HFP) are indeed the youngest objects in the family of GPS and CSS sources. VSOP-2 observations can reveal their angular morphology and determine whether any are Ultra-compact Symmetric Objects.
57 - Y.M. Pihlstroem 2002
Combining our own observations with data from the literature, we consider the incidence of HI absorption in Gigahertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources. Here we present our preliminary results, where we find that the smaller GPS sources (<1 kpc) on average have larger HI column densities than the larger CSS sources (>1 kpc). Both a spherical and an axi-symmetric gas distribution, with a radial power law density profile, can be used to explain this anti-correlation between projected linear size and HI column density. Since most detections occur in galaxy classified objects, we argue that if the unified schemes apply to the GPS/CSSs, a disk distribution for the HI is more likely.
Radio galaxies are known to go through cycles of activity, where phases of apparent quiescence can be followed by repeated activity of the central supermassive black hole. A better understanding of this cycle is crucial for ascertaining the energetic impact that the jets have on the host galaxy, but little is known about it. We used deep LOFAR images at 150 MHz of the Lockman Hole extragalactic field to select a sample of 158 radio sources with sizes $> 60^{primeprime}$ in different phases of their jet life cycle. Using a variety of criteria (e.g. core prominence combined with low-surface brightness of the extended emission and steep spectrum of the central region) we selected a subsample of candidate restarted radio galaxies representing between 13% and 15% of the 158 sources of the main sample. We compare their properties to the rest of the sample, which consists of remnant candidates and active radio galaxies. Optical identifications and characterisations of the host galaxies indicate similar properties for candidate restarted, remnant, and active radio galaxies, suggesting that they all come from the same parent population. The fraction of restarted radio galaxies is slightly higher with respect to remnants, suggesting that the restarted phase can often follow after a relatively short remnant phase (the duration of the remnant phase being a few times 10$^{7}$ years). This confirms that the remnant and restarted phases are integral parts of the life cycle of massive elliptical galaxies. A preliminary investigation does not suggest a strong dependence of this cycle on the environment surrounding any given galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا