Do you want to publish a course? Click here

Operator analysis of effective spin-flavor interactions for L=1 excited baryons

42   0   0.0 ( 0 )
 Added by Carlos Luis Schat
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We match the non-relativistic quark model, with both flavor dependent and flavor independent effective quark-quark interactions, to the spin-flavor operator basis of the 1/Nc expansion for the L=1 non-strange baryons. We obtain analytic expressions for the coefficients of the 1/Nc operators in terms of radial integrals that depend on the shape and relative strength of the spin-spin, spin-orbit and tensor interactions of the model, which are left unspecified. We obtain several new, parameter-free relations between the seven masses and the two mixing angles that can discriminate between different spin-flavor structures of the effective quark-quark interaction. We discuss in detail how a general parametrization of the mass matrix depends on the mixing angles and is constrained by the assumptions on the effective quark-quark interaction. We find that, within the present experimental uncertainties, consistency with the best values of the mixing angles as determined by a recent global fit to masses and decays does not exclude any of the two most extreme possibilities of flavor dependent (independent) quark-quark interactions, as generated by meson (gluon) exchange interactions.



rate research

Read More

Consistent interactions for off-shell fermion fields of arbitrary spin are constructed from the gauge-invariance requirement of the interaction Lagrangians. These interactions play a crucial role in the quantum hadrodynamical description of high-spin baryon resonances in hadronic processes. We find that the power of the momentum dependence of a consistent interaction rises with the spin of the fermion field. This leads to unphysical structures in the energy dependence of the computed tree-level cross sections when the short-distance physics is cut off with standard hadronic form factors. A novel, spin-dependent hadronic form factor is proposed that suppresses the unphysical artifacts.
182 - Dan Pirjol , Carlos Schat 2010
We discuss the matching of the quark model to the effective mass operator of the 1/Nc expansion using the permutation group S_N. As an illustration of the general procedure we perform the matching of the Isgur-Karl model for the spectrum of the negative parity L=1 excited baryons. Assuming the most general two-body quark Hamiltonian, we derive two correlations among the masses and mixing angles of these states which should hold in any quark model. These correlations constrain the mixing angles and can be used to test for the presence of three-body quark forces.
The charmonium-nucleon interaction is studied by the time-dependent HAL QCD method. We use a larger lattice volume and the relativistic heavy quark action for charm quark to obtain less systematic errors than those in our previous study. As a result, the sizable J/$psi$N hyperfine splitting is observed, indicating that the spin-spin interaction is important to understand this system quantitatively. No J/$psi$N or $eta_c$N bound state is observed below the thresholds as in the previous results.
We use a symmetry-preserving truncation of meson and baryon bound-state equations in quantum field theory in order to develop a unified description of systems constituted from light- and heavy-quarks. In particular, we compute the spectrum and leptonic decay constants of ground-state pseudoscalar- and vector-mesons: $q^prime bar q$, $Q^prime bar Q$, with $q^prime,q=u,d,s$ and $Q^prime,Q = c,b$; and the masses of $J^P=3/2^+$ baryons and their first positive-parity excitations, including those containing one or more heavy quarks. This Poincare-covariant analysis predicts that such baryons have a complicated angular momentum structure. For instance, the ground states are all primarily $S$-wave in character, but each possesses $P$-, $D$- and $F$-wave components, with the $P$-wave fraction being large in the $qqq$ states; and the first positive-parity excitation in each channel has a large $D$-wave component, which grows with increasing current-quark mass, but also exhibits features consistent with a radial excitation. The configuration space extent of all such baryons decreases as the mass of the valence-quark constituents increases.
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations. We have studied the low-lying baryons $N^*(1535)$, $N^*(1440)$, and $Lambda(1405)$. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained at finite volume is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. The role and importance of various components of the Hamiltonian model are examined in the finite volume. The analysis of the lattice QCD data can help us to undertand the structure of these states better.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا