Do you want to publish a course? Click here

Diffusion-Convolutional Neural Networks

86   0   0.0 ( 0 )
 Added by James Atwood
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We present diffusion-convolutional neural networks (DCNNs), a new model for graph-structured data. Through the introduction of a diffusion-convolution operation, we show how diffusion-based representations can be learned from graph-structured data and used as an effective basis for node classification. DCNNs have several attractive qualities, including a latent representation for graphical data that is invariant under isomorphism, as well as polynomial-time prediction and learning that can be represented as tensor operations and efficiently implemented on the GPU. Through several experiments with real structured datasets, we demonstrate that DCNNs are able to outperform probabilistic relational models and kernel-on-graph methods at relational node classification tasks.



rate research

Read More

The predictive power and overall computational efficiency of Diffusion-convolutional neural networks make them an attractive choice for node classification tasks. However, a naive dense-tensor-based implementation of DCNNs leads to $mathcal{O}(N^2)$ memory complexity which is prohibitive for large graphs. In this paper, we introduce a simple method for thresholding input graphs that provably reduces memory requirements of DCNNs to O(N) (i.e. linear in the number of nodes in the input) without significantly affecting predictive performance.
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCN operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the Pubmed dataset.
Graph convolution networks have recently garnered a lot of attention for representation learning on non-Euclidean feature spaces. Recent research has focused on stacking multiple layers like in convolutional neural networks for the increased expressive power of graph convolution networks. However, simply stacking multiple graph convolution layers lead to issues like vanishing gradient, over-fitting and over-smoothing. Such problems are much less when using shallower networks, even though the shallow networks have lower expressive power. In this work, we propose a novel Multipath Graph convolutional neural network that aggregates the output of multiple different shallow networks. We train and test our model on various benchmarks datasets for the task of node property prediction. Results show that the proposed method not only attains increased test accuracy but also requires fewer training epochs to converge. The full implementation is available at https://github.com/rangan2510/MultiPathGCN
Deep neural networks can suffer from the exploding and vanishing activation problem, in which the networks fail to train properly because the neural signals either amplify or attenuate across the layers and become saturated. While other normalization methods aim to fix the stated problem, most of them have inference speed penalties in those applications that require running averages of the neural activations. Here we extend the unitary framework based on Lie algebra to neural networks of any dimensionalities, overcoming the major constraints of the prior arts that limit synaptic weights to be square matrices. Our proposed unitary convolutional neural networks deliver up to 32% faster inference speeds and up to 50% reduction in permanent hard disk space while maintaining competitive prediction accuracy.
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their group convolution architectures by a predefined partitioning of the filters of each convolutional layer into multiple regular filter groups with an equal spatial group size and data-independence, which prevents a full exploitation of their potential. To tackle this issue, we propose a novel method of designing self-grouping convolutional neural networks, called SG-CNN, in which the filters of each convolutional layer group themselves based on the similarity of their importance vectors. Concretely, for each filter, we first evaluate the importance value of their input channels to identify the importance vectors, and then group these vectors by clustering. Using the resulting emph{data-dependent} centroids, we prune the less important connections, which implicitly minimizes the accuracy loss of the pruning, thus yielding a set of emph{diverse} group convolution filters. Subsequently, we develop two fine-tuning schemes, i.e. (1) both local and global fine-tuning and (2) global only fine-tuning, which experimentally deliver comparable results, to recover the recognition capacity of the pruned network. Comprehensive experiments carried out on the CIFAR-10/100 and ImageNet datasets demonstrate that our self-grouping convolution method adapts to various state-of-the-art CNN architectures, such as ResNet and DenseNet, and delivers superior performance in terms of compression ratio, speedup and recognition accuracy. We demonstrate the ability of SG-CNN to generalise by transfer learning, including domain adaption and object detection, showing competitive results. Our source code is available at https://github.com/QingbeiGuo/SG-CNN.git.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا