Do you want to publish a course? Click here

Molecular Gas and Star Formation Properties in the Central and Bar Regions of NGC 6946

224   0   0.0 ( 0 )
 Added by Hsi-An Pan
 Publication date 2015
  fields Physics
and research's language is English
 Authors Hsi-An Pan




Ask ChatGPT about the research

In this work, we investigate the molecular gas and star formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star formation tracers. High-resolution image (100 pc) of $^{13}$CO (1-0) is created by single dish NRO45 and interferometer CARMA for the inner 2 kpc disk, which includes the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single dish HCN (1-0) observations were also made to constrain the amount of dense gas. Physical properties of molecular gas are inferred by (1) the Large Velocity Gradient (LVG) calculations using our observations and archival $^{12}$CO (1-0), $^{12}$CO(2-1) data, (2) dense gas fraction suggested by HCN to $^{12}$CO (1-0) luminosity ratio, and (3) infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. Dense gas fraction of the central region is similar with that of LIRGs/ULIRGs, while the offset ridges are close to the global average of normal galaxies. The coolest and least dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. Star formation efficiency (SFE) changes by ~ 5 times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by galactic bar. We find a consistency between star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of sub-kpc scale temperature is driven by star formation.



rate research

Read More

93 - F. Sakhibov , A. S. Gusev , 2021
Star formation induced by a spiral shock wave, which in turn is generated by a spiral density wave, produces an azimuthal age gradient across the spiral arm, which has opposite signs on either side of the corotational resonance. An analysis of the spatial separation between young star clusters and nearby HII regions made it possible to determine the position of the corotation radius in the studied galaxies. Fourier analysis of the gas velocity field in the same galaxies independently confirmed the corotation radius estimates obtained by the morphological method presented here.
We present observations of the HCN and HCO+ J=1-0 transitions in the center of the nearby spiral galaxy NGC 6946 made with the BIMA and CARMA interferometers. Using the BIMA SONG CO map, we investigate the change in the I_HCN/I_CO and I_ HCO/I_CO integrated intensity ratios as a function of radius in the central kiloparsec of the galaxy, and find that they are strongly concentrated at the center. We use the 2MASS K_S band image to find the stellar surface density, and then construct a map of the hydrostatic midplane pressure. We apply a PDR model to the observed I_HCN/I_HCO+ integrated intensity ratio to calculate the number density of molecular hydrogen in the dense gas tracer emitting region, and find that it is roughly constant at 10^5 cm^-3 across our map. We explore two hypotheses for the distribution of the dense gas. If the HCN and HCO+ emission comes from self-gravitating density peaks inside of a less dense gas distribution, there is a linear proportionality between the internal velocity dispersion of the dense gas and the size of the density peak. Alternatively, the HCN and HCO+ emission could come from dense gas homogeneously distributed throughout the center and bound by ambient pressure, similar to what is observed toward the center of the Milky Way. We find both of these hypotheses to be plausible. We fit the relationships between I_HCN, I_HCO+, and I_CO. Correlations between the hydrostatic midplane pressure and I_HCN and I_HCO+ are demonstrated, and power law fits are provided. We confirm the validity of a relation found by Blitz & Rosolowsky (2006) between pressure and the molecular to atomic gas ratio in the high hydrostatic midplane pressure regime (10^6-10^8 cm^-3 K).
110 - D. Espada , S. Martin , S. Verley 2018
Mergers of galaxies are an important mode for galaxy evolution because they serve as an efficient trigger of powerful starbursts. However, observational studies of the molecular gas properties during their early stages are scarce. We present interferometric CO(2-1) maps of two luminous infrared galaxies (LIRGs), NGC 3110 and NGC 232, obtained with the Submillimeter Array (SMA) with ~ 1 kpc resolution. While NGC 3110 is a spiral galaxy interacting with a minor (14:1 stellar mass) companion, NGC 232 is interacting with a similarly sized object. We find that such interactions have likely induced in these galaxies enhancements in the molecular gas content and central concentrations, partly at the expense of atomic gas. The obtained molecular gas surface densities in their circumnuclear regions are $Sigma_{rm mol}~gtrsim10^{2.5}$ M$_odot$ pc$^{-2}$, higher than in non-interacting objects by an order of magnitude. Gas depletion times of ~ 0.5 - 1 Gyr are found for the different regions, lying in between non-interacting disk galaxies and the starburst sequence. In the case of NGC 3110, the spiral arms show on average 0.5 dex shorter depletion times than in the circumnuclear regions if we assume a similar H$_2$-CO conversion factor. We show that even in the early stages of the interaction with a minor companion, a starburst is formed along the circumnuclear region and spiral arms, where a large population of SSCs is found (~350), and at the same time a large central gas concentration is building up which might be the fuel for an active galactic nucleus. The main morphological properties of the NGC 3110 system are reproduced by our numerical simulations and allow us to estimate that the current epoch of the interaction is at ~ 150 Myrs after closest approach.
Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(J=1-0) observations are used to study the cold molecular ISM of the Cartwheel ring galaxy and its relation to HI and massive star formation (SF). CO moment maps find $(2.69pm0.05)times10^{9}$ M$_{odot}$ of H$_2$ associated with the inner ring (72%) and nucleus (28%) for a Galactic I(CO)-to-N(H2) conversion factor ($alpha_{rm CO}$). The spokes and disk are not detected. Analysis of the inner rings CO kinematics show it to be expanding ($V_{rm exp}=68.9pm4.9$ km s$^{-1}$) implying an $approx70$ Myr age. Stack averaging reveals CO emission in the starburst outer ring for the first time, but only where HI surface density ($Sigma_{rm HI}$) is high, representing $M_{rm H_2}=(7.5pm0.8)times10^{8}$ M$_{odot}$ for a metallicity appropriate $alpha_{rm CO}$, giving small $Sigma_{rm H_2}$ ($3.7$ M$_{odot}$ pc$^{-2}$), molecular fraction ($f_{rm mol}=0.10$), and H$_2$ depletion timescales ($tau_{rm mol} approx50-600$ Myr). Elsewhere in the outer ring $Sigma_{rm H_2}lesssim 2$ M$_{odot}$ pc$^{-2}$, $f_{rm mol}lesssim 0.1$ and $tau_{rm mol}lesssim 140-540$ Myr (all $3sigma$). The inner ring and nucleus are H$_2$-dominated and are consistent with local spiral SF laws. $Sigma_{rm SFR}$ in the outer ring appears independent of $Sigma_{rm H_2}$, $Sigma_{rm HI}$ or $Sigma_{rm HI+H_2}$. The ISMs long confinement in the robustly star forming rings of the Cartwheel and AM0644-741 may result in either a large diffuse H$_2$ component or an abundance of CO-faint low column density molecular clouds. The H$_2$ content of evolved starburst rings may therefore be substantially larger. Due to its lower $Sigma_{rm SFR}$ and age the Cartwheels inner ring has yet to reach this state. Alternately, the outer ring may trigger efficient SF in an HI-dominated ISM.
136 - M. Das 2014
We present the detection of molecular gas using CO(1-0) line emission and follow up Halpha imaging observations of galaxies located in nearby voids. The CO(1-0) observations were done using the 45m telescope of the Nobeyama Radio Observatory (NRO) and the optical observations were done using the Himalayan Chandra Telescope (HCT). Although void galaxies lie in the most under dense parts of our universe, a significant fraction of them are gas rich, spiral galaxies that show signatures of ongoing star formation. Not much is known about their cold gas content or star formation properties. In this study we searched for molecular gas in five void galaxies using the NRO. The galaxies were selected based on their relatively higher IRAS fluxes or Halpha line luminosities. CO(1--0) emission was detected in four galaxies and the derived molecular gas masses lie between (1 - 8)E+9 Msun. The H$alpha$ imaging observations of three galaxies detected in CO emission indicates ongoing star formation and the derived star formation rates vary between from 0.2 - 1.0 Msun/yr, which is similar to that observed in local galaxies. Our study shows that although void galaxies reside in under dense regions, their disks may contain molecular gas and have star formation rates similar to galaxies in denser environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا