Do you want to publish a course? Click here

A Novel Subclass of Analytic Functions Specified by a Family of Fractional Derivatives in the Complex Domain

161   0   0.0 ( 0 )
 Added by Adem Kilicman
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, by making use of a certain family of fractional derivative operators in the complex domain, we introduce and investigate a new subclass $mathcal{P}_{tau,mu}(k,delta,gamma)$ of analytic and univalent functions in the open unit disk $mathbb{U}$. In particular, for functions in the class $mathcal{P}_{tau,mu}(k,delta,gamma)$, we derive sufficient coefficient inequalities, distortion theorems involving the above-mentioned fractional derivative operators, and the radii of starlikeness and convexity. In addition, some applications of functions in the class $mathcal{P}_{tau,mu}(k,delta,gamma)$ are also pointed out.



rate research

Read More

In this paper, we introduce and investigate a novel class of analytic and univalent functions of negative coefficients in the open unit disk. For this function class, we obtain characterization and distortion theorems as well as the radii of close-to-convexity, starlikeness and convexity by using fractional calculus techniques.
Let $n$ be a positive integer. Let $mathbf U$ be the unit disk, $pge 1$ and let $h^p(mathbf U)$ be the Hardy space of harmonic functions. Kresin and Mazya in a recent paper found the representation for the function $H_{n,p}(z)$ in the inequality $$|f^{(n)} (z)|leq H_{n,p}(z)|Re(f-mathcal P_l)|_{h^p(mathbf U)}, Re fin h^p(mathbf U), zin mathbf U,$$ where $mathcal P_l$ is a polynomial of degree $lle n-1$. We find or represent the sharp constant $C_{p,n}$ in the inequality $H_{n,p}(z)le frac{C_{p,n}}{(1-|z|^2)^{1/p+n}}$. This extends a recent result of the second author and Markovic, where it was considered the case $n=1$ only. As a corollary, an inequality for the modulus of the $n-{th}$ derivative of an analytic function defined in a complex domain with the bounded real part is obtained. This result improves some recent result of Kresin and Mazya.
In this article, we impose a new class of fractional analytic functions in the open unit disk. By considering this class, we define a fractional operator, which is generalized Salagean and Ruscheweyh differential operators. Moreover, by means of this operator, we introduce an interesting subclass of functions which are analytic and univalent. Furthermore, this effort covers coefficient bounds, distortions theorem, radii of starlikeness, convexity, bounded turning, extreme points and integral means inequalities of functions belongs to this class. Finally, applications involving certain fractional operators are illustrated.
For an analytic function $f$ defined on the unit disk $|z|<1$, let $Delta(r,f)$ denote the area of the image of the subdisk $|z|<r$ under $f$, where $0<rle 1$. In 1990, Yamashita conjectured that $Delta(r,z/f)le pi r^2$ for convex functions $f$ and it was finally settled in 2013 by Obradovi{c} and et. al.. In this paper, we consider a class of analytic functions in the unit disk satisfying the subordination relation $zf(z)/f(z)prec (1+(1-2beta)alpha z)/(1-alpha z)$ for $0le beta<1$ and $0<alphale 1$. We prove Yamashitas conjecture problem for functions in this class, which solves a partial solution to an open problem posed by Ponnusamy and Wirths.
The theory of $q$-analogs frequently occurs in a number of areas, including the fractals and dynamical systems. The $q$-derivatives and $q$-integrals play a prominent role in the study of $q$-deformed quantum mechanical simple harmonic oscillator. In this paper, we define a symmetric $q$-derivative operator and study new family of univalent functions defined by use of that operator. We establish some new relations between functions satisfying analytic conditions related to conical sections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا