Do you want to publish a course? Click here

Heavy mesons in a hadronic medium: interaction and transport coefficients

100   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We review the recent results of heavy meson diffusion in thermal hadronic matter. The interactions of D and B-bar mesons with other hadrons (light mesons and baryons) are extracted from effective field theories based on chiral and heavy-quark symmetries. When these guiding principles are combined with exact unitarity, physical values of the cross sections are obtained. These cross sections (which contain resonant contributions) are used to calculate the drag and diffusion coefficients of heavy mesons immersed in a thermal and dense medium. The transport coefficients are computed using a Fokker-Planck reduction of the Boltzmann equation.



rate research

Read More

We estimate the shear and the bulk viscous coefficients for a hot hadronic gas mixture constituting of pions and nucleons. The viscosities are evaluated in the relativistic kinetic theory approach by solving the transport equation in the relaxation time approximation for binary collisions ($pipi$,$pi N$ and $NN$). Instead of vacuum cross-sections usually used in the literature we employ in-medium scattering amplitudes in the estimation of the relaxation times. The modified cross-sections for $pipi$ and $pi N$ scattering are obtained using one-loop modified thermal propagators for $rho$, $sigma$ and $Delta$ in the scattering amplitudes which are calculated using effective interactions. The resulting suppression of the cross sections at finite temperature and baryon density is observed to significantly affect the $T$ and $mu_N$ dependence of the viscosities of the system.
We present dilepton spectra from p+p and p+Nb collisions at a kinetic beam energy of 3.5 GeV, which were simulated with the GiBUU transport model assuming different in-medium scenarios. We compare these spectra to preliminary HADES data and show that GiBUU can describe the data reasonably well. Our simulations indicate that the intermediate dilepton-mass region is sensitive to the N-Delta electromagnetic transition form factor, which up to now is unmeasured in the time-like region.
We report on broadly based systematic investigations of the modeling components for open heavy-flavor diffusion and energy loss in strongly interacting matter in their application to heavy-flavor observables in high-energy heavy-ion collisions, conducted within an EMMI Rapid Reaction Task Force framework. Initial spectra including cold-nuclear-matter effects, a wide variety of space-time evolution models, heavy-flavor transport coefficients, and hadronization mechanisms are scrutinized in an effort to quantify pertinent uncertainties in the calculations of nuclear modification factors and elliptic flow of open heavy-flavor particles in nuclear collisions. We develop procedures for error assessments and criteria for common model components to improve quantitative estimates for the (low-momentum) heavy-flavor diffusion coefficient as a long-wavelength characteristic of QCD matter as a function of temperature, and for energy loss coefficients of high-momentum heavy-flavor particles.
138 - E. Oset , A. Ramos , E. J. Garzon 2012
In this talk we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei. We begin with the hidden gauge formalism for the interaction of vector mesons, then review results for vector baryon interaction and in particular the resonances which appear as composite states, dynamically generated from the interaction of vector mesons with baryons. New developments concerning the mixing of these states with pseudoscalars and baryons are also reported. We include some discussion on the $5/2^+$ $Delta$ resonances around 2000 MeV, where we suggest that the $Delta(2000)5/2^+$ resonance, which comes in the PDG from averaging a set of resonances appearing around 1700 MeV and another one around 2200 MeV, corresponds indeed to two distinct resonances. We also report on a hidden charm baryon state around 4400 MeV coming from the interaction of vector mesons and baryons with charm, and how this state has some repercussion in the $J/psi$ suppression in nuclei. The interaction of $K^*$ in nuclei is also reported and suggestions are made to measure by means of the transparency ratio the huge width in the medium that the theoretical calculations predict. The formalism is extended to $J/psi$ interaction with nuclei and the transparency ratio for $J/psi$ photoproduction in nuclei is studied and shown to be a good tool to find possible baryon states which couple to $J/psi N$.
Several transport models have been employed in recent years to analyze heavy-flavor meson spectra in high-energy heavy-ion collisions. Heavy-quark transport coefficients extracted from these models with their default parameters vary, however, by up to a factor of 5 at high momenta. To investigate the origin of this large theoretical uncertainty, a systematic comparison of heavy-quark transport coefficients is carried out between various transport models. Within a common scheme devised for the nuclear modification factor of charm quarks in a brick medium of a quark-gluon plasma, the systematic uncertainty of the extracted drag coefficient among these models is shown to be reduced to a factor of 2, which can be viewed as the smallest intrinsic systematical error band achievable at present time. This indicates the importance of a realistic hydrodynamic evolution constrained by bulk hadron spectra and of heavy-quark hadronization for understanding the final heavy-flavor hadron spectra and extracting heavy-quark drag coefficient. The transverse transport coefficient is less constrained due to the influence of the underlying mechanism for heavy-quark medium interaction. Additional constraints on transport models such as energy loss fluctuation and transverse-momentum broadening can further reduce theoretical uncertainties in the extracted transport coefficients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا