No Arabic abstract
The Galactic Center (GC) has been long known to host gamma-ray emission detected to >10 TeV. HESS data now points to two plausible origins: the supermassive black hole (perhaps with >PeV cosmic rays and neutrinos) or high-energy electrons from the putative X-ray pulsar wind nebula G359.95-0.04 observed by Chandra and NuSTAR. We show that if the magnetic field experienced by PWN electrons is near the several mG ambient field strength suggested by radio observations of the nearby GC magnetar SGR J1745-29, synchrotron losses constrain the TeV gamma-ray output to be far below the data. Accounting for the peculiar geometry of GC infrared emission, we also find that the requisite TeV flux could be reached if the PWN is ~1 pc from Sgr A* and the magnetic field is two orders of magnitude weaker, a scenario that we discuss in relation to recent data and theoretical developments. Otherwise, Sgr A* is left, which would then be a PeV link to other AGN.
Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.
Recent observations of gamma-rays with the Fermi Large Area Telescope (LAT) in the direction of the inner Galaxy revealed a mysterious GeV excess. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are due to either spherically distributed annihilating dark matter (DM) or abnormal population of millisecond pulsars. We suggested an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ~ 10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the barrier near the cloud edge formed by the self-excited MHD turbulence. Such depletion of CRs inside the clouds may be a reason of deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below few GeV. This in turn changes the ratio between various emission components at those energies, and may potentially absorb the GeV excess by simple renormalization of key components.
The IceCube neutrino discovery presents an opportunity to answer long-standing questions in high-energy astrophysics. For their own sake and relations to other processes, it is important to understand neutrinos arising from the Milky Way, which should have an accompanying flux of gamma rays. Examining Fermi TeV data, and applying other constraints up to >1 PeV, it appears implausible that the Galactic fraction of the IceCube flux is large, though could be present at some level. We address Sgr A*, where the TeV-PeV neutrinos may outrun gamma rays due to gamma-gamma opacity, and further implications, including dark matter and cosmic-ray electrons.
Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation muon neutrinos are produced through the delta resonance in interactions of pulsar accelerated ions with its thermal radiation field. High energy gamma rays also should be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here we estimate TeV gamma ray flux at Earth from few nearby young pulsars. When compared with the observations we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect we obtain the (revised) event rates at Earth due to few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.
Various studies have implied the existence of a gaseous halo around the Galaxy extending out to 100 kpc. Galactic cosmic rays (CRs) that propagate to the halo, either by diffusion or by convection with the possibly existing large-scale Galactic wind, can interact with the gas therein and produce gamma-rays via proton-proton collision. We calculate the cosmic ray distribution in the halo and the gamma-ray flux, and explore the dependence of the result on model parameters such as diffusion coefficient, CR luminosity, CR spectral index. We find that the current measurement of isotropic gamma-ray background at $lesssim$TeV with Fermi Large Area Telescope already approaches a level that can provide interesting constraints on the properties of Galactic cosmic ray (e.g., with CR luminosity $L_{CR}leq 10^{41}$erg/s). We also discuss the possibilities of the Fermi bubble and IceCube neutrinos originating from the proton-proton collision between cosmic rays and gas in the halo, as well as the implication of our results for the baryon budget of the hot circumgalactic medium of our Galaxy. Given that the isotropic gamma-ray background is likely to be dominated by unresolved extragalactic sources, future telescopes may extract more individual sources from the IGRB, and hence put even more stringent restriction on the relevant quantities (such as Galactic cosmic ray luminosity and baryon budget in the halo) in the presence of a turbulent halo that we consider.