Do you want to publish a course? Click here

Inverse Faraday Effect driven by Radiation Friction

71   0   0.0 ( 0 )
 Added by Andrea Macchi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A collective, macroscopic signature to detect radiation friction in laser-plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of a quasistatic axial magnetic field. This peculiar inverse Faraday effect is investigated by analytical modeling and three-dimensional simulations, showing that multi-gigagauss magnetic fields may be generated at laser intensities $>10^{23}~mbox{W cm}^{-2}$.



rate research

Read More

The concept of ponderomotive potential is upgraded to a regime in which radiation friction becomes dominant. The radiation friction manifests itself in novel features of long-term capturing of the particles released at the focus and impenetrability of the focus from the exterior. We apply time scales separation to the Landau-Lifshitz equation splitting the particle motion into quivering and slow drift of a guiding center. The drift equation is deduced by averaging over fast motion.
Radiation losses in the interaction of superintense circularly polarized laser pulses with high-density plasmas can lead to the generation of strong quasistatic magnetic fields via absorption of the photon angular momentum (so called inverse Faraday effect). To achieve the magnetic field strength of several Giga Gauss laser intensities $simeq 10^{24}$W/cm$^2$ are required which brings the interaction to the border between the classical and the quantum regimes. We improve the classical modeling of the laser interaction with overcritical plasma in the hole boring regime by using a modified radiation friction force accounting for quantum recoil and spectral cut-off at high energies. The results of analytical calculations and three-dimensional particle-in-cell simulations show that, in foreseeable scenarios, the quantum effects may lead to a decrease of the conversion rate of laser radiation into high-energy photons by a factor 2-3. The magnetic field amplitude is suppressed accordingly, and the magnetic field energy - by more than one order in magnitude. This quantum suppression is shown to reach a maximum at a certain value of intensity, and does not grow with the further increase of intensities. The non monotonic behavior of the quantum suppression factor results from the joint effect of the longitudinal plasma acceleration and the radiation reaction force. The predicted features could serve as a suitable diagnostic for radiation friction theories.
In the interaction of laser pulses of extreme intensity ($>10^{23}~{rm W cm}^{-2}$) with high-density, thick plasma targets, simulations show significant radiation friction losses, in contrast to thin targets for which such losses are negligible. We present an analytical calculation, based on classical radiation friction modeling, of the conversion efficiency of the laser energy into incoherent radiation in the case when a circularly polarized pulse interacts with a thick plasma slab of overcritical initial density. By accounting for three effects including the influence of radiation losses on the single electron trajectory, the global `hole boring motion of the laser-plasma interaction region under the action of radiation pressure, and the inhomogeneity of the laser field in both longitudinal and transverse direction, we find a good agreement with the results of three-dimensional particle-in-cell simulations. Overall, the collective effects greatly reduce radiation losses with respect to electrons driven by the same laser pulse in vacuum, which also shift the reliability of classical calculations up to higher intensities.
A circularly polarized light can induce a dissipationless dc current in a quantum nanoring which is responsible for a resonant helicity-driven contribution to magnetic moment. This current is not suppressed by thermal averaging despite its quantum nature. We refer to this phenomenon as the quantum resonant inverse Faraday effect. For weak electromagnetic field, when the characteristic coupling energy is small compared to the energy level spacing, we predict narrow resonances in the circulating current and, consequently, in the magnetic moment of the ring. For strong fields, the resonances merge into a wide peak with a width determined by the spectral curvature. We further demonstrate that weak short-range disorder splits the resonances and induces additional particularly sharp and high resonant peaks in dc current and magnetization. In contrast, long-range disorder leads to a chaotic behavior of the system in the vicinity of the separatrix that divides the phase space of the system into regions with dynamically localized and delocalized states.
101 - Saikat Banerjee , Umesh Kumar , 2021
The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers a promising route to ultrafast control of spin states. Here we study the inverse Faraday effect in Mott insulators using the Floquet theory. In the Mott insulators with inversion symmetry, we find that the effective magnetic field induced by the IFE couples ferromagnetically to the neighboring spins. While for the Mott insulators without inversion symmetry, the effective magnetic field due to IFE couples antiferromagnetically to the neighboring spins. We apply the theory to the spin-orbit coupled single- and multi-orbital Hubbard model that is relevant for the Kitaev quantum spin liquid materials and demonstrate that the magnetic interactions can be tuned by light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا