Decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations


Abstract in English

We investigate the decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations. The achievements of this paper are two folds. One is improved decay rates of $u_{th}$ and $ a {bf u}$, especially we show that $|u_{th}(r,z)|leq cleft(f{log r}{r}right)^{f 12}$ for any smooth axially symmetric D-solutions to the Navier-Stokes equations. These improvement are based on improved weighted estimates of $om_{th}$, integral representations of ${bf u}$ in terms of $bm{om}=textit{curl }{bf u}$ and $A_p$ weight for singular integral operators, which yields good decay estimates for $( a u_r, a u_z)$ and $(om_r, om_{z})$, where $bm{om}= om_r {bf e}_r + om_{th} {bf e}_{th}+ om_z {bf e}_z$. Another is the first decay rate estimates in the $Oz$-direction for smooth axially symmetric flows without swirl. We do not need any small assumptions on the forcing term.

Download