Do you want to publish a course? Click here

A Discontinuous Galerkin method with a modified penalty flux for the propagation and scattering of acousto-elastic waves

48   0   0.0 ( 0 )
 Added by Ruichao Ye
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop an approach for simulating acousto-elastic wave phenomena, including scattering from fluid-solid boundaries, where the solid is allowed to be anisotropic, with the Discontinuous Galerkin method. We use a coupled first-order elastic strain-velocity, acoustic velocity-pressure formulation, and append penalty terms based on interior boundary continuity conditions to the numerical (central) flux so that the consistency condition holds for the discretized Discontinuous Galerkin weak formulation. We incorporate the fluid-solid boundaries through these penalty terms and obtain a stable algorithm. Our approach avoids the diagonalization into polarized wave constituents such as in the approach based on solving elementwise Riemann problems.



rate research

Read More

In this paper, a high order quasi-conservative discontinuous Galerkin (DG) method using the non-oscillatory kinetic flux is proposed for the 5-equation model of compressible multi-component flows with Mie-Gruneisen equation of state. The method mainly consists of three steps: firstly, the DG method with the non-oscillatory kinetic flux is used to solve the conservative equations of the model; secondly, inspired by Abgralls idea, we derive a DG scheme for the volume fraction equation which can avoid the unphysical oscillations near the material interfaces; finally, a multi-resolution WENO limiter and a maximum-principle-satisfying limiter are employed to ensure oscillation-free near the discontinuities, and preserve the physical bounds for the volume fraction, respectively. Numerical tests show that the method can achieve high order for smooth solutions and keep non-oscillatory at discontinuities. Moreover, the velocity and pressure are oscillation-free at the interface and the volume fraction can stay in the interval [0,1].
A discontinuous Galerkin (DG) method suitable for large-scale astrophysical simulations on Cartesian meshes as well as arbitrary static and moving Voronoi meshes is presented. Most major astrophysical fluid dynamics codes use a finite volume (FV) approach. We demonstrate that the DG technique offers distinct advantages over FV formulations on both static and moving meshes. The DG method is also easily generalized to higher than second-order accuracy without requiring the use of extended stencils to estimate derivatives (thereby making the scheme highly parallelizable). We implement the technique in the AREPO code for solving the fluid and the magnetohydrodynamic (MHD) equations. By examining various test problems, we show that our new formulation provides improved accuracy over FV approaches of the same order, and reduces post-shock oscillations and artificial diffusion of angular momentum. In addition, the DG method makes it possible to represent magnetic fields in a locally divergence-free way, improving the stability of MHD simulations and moderating global divergence errors, and is a viable alternative for solving the MHD equations on meshes where Constrained-Transport (CT) cannot be applied. We find that the DG procedure on a moving mesh is more sensitive to the choice of slope limiter than is its FV method counterpart. Therefore, future work to improve the performance of the DG scheme even further will likely involve the design of optimal slope limiters. As presently constructed, our technique offers the potential of improved accuracy in astrophysical simulations using the moving mesh AREPO code as well as those employing adaptive mesh refinement (AMR).
Discontinuous Galerkin finite element schemes exhibit attractive features for accurate large-scale wave-propagation simulations on modern parallel architectures. For many applications, these schemes must be coupled with non-reflective boundary treatments to limit the size of the computational domain without losing accuracy or computational efficiency, which remains a challenging task. In this paper, we present a combination of a nodal discontinuous Galerkin method with high-order absorbing boundary conditions (HABCs) for cuboidal computational domains. Compatibility conditions are derived for HABCs intersecting at the edges and the corners of a cuboidal domain. We propose a GPU implementation of the computational procedure, which results in a multidimensional solver with equations to be solved on 0D, 1D, 2D and 3D spatial regions. Numerical results demonstrate both the accuracy and the computational efficiency of our approach.
We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, display numerical results to illustrate their performance, and conclude with bibliography notes. The main ingredients in devising these DG methods are (i) a local Galerkin projection of the underlying partial differential equations at the element level onto spaces of polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; (ii) a judicious choice of the numerical flux to provide stability and consistency; and (iii) a global jump condition that enforces the continuity of the numerical flux to obtain a global system in terms of the numerical trace. These DG methods are termed hybridized DG methods, because they are amenable to hybridization (static condensation) and hence to more efficient implementations. They share many common advantages of DG methods and possess some unique features that make them well-suited to wave propagation problems.
92 - A. Hakim , G. Hammett , E. Shi 2019
In this paper we present energy-conserving, mixed discontinuous Galerkin (DG) and continuous Galerkin (CG) schemes for the solution of a broad class of physical systems described by Hamiltonian evolution equations. These systems often arise in fluid mechanics (incompressible Euler equations) and plasma physics (Vlasov--Poisson equations and gyrokinetic equations), for example. The dynamics is described by a distribution function that evolves given a Hamiltonian and a corresponding Poisson bracket operator, with the Hamiltonian itself computed from field equations. Hamiltonian systems have several conserved quantities, including the quadratic invariants of total energy and the $L_2$ norm of the distribution function. For accurate simulations one must ensure that these quadratic invariants are conserved by the discrete scheme. We show that using a discontinuous Galerkin scheme to evolve the distribution function and ensuring that the Hamiltonian lies in its continuous subspace leads to an energy-conserving scheme in the continuous-time limit. Further, the $L_2$ norm is conserved if central fluxes are used to update the distribution function, but decays monotonically when using upwind fluxes. The conservation of density and $L_2$ norm is then used to show that the entropy is a non-decreasing function of time. The proofs shown here apply to any Hamiltonian system, including ones in which the Poisson bracket operator is non-canonical (for example, the gyrokinetic equations). We demonstrate the ability of the scheme to solve the Vlasov--Poisson and incompressible Euler equations in 2D and provide references where we have applied these schemes to solve the much more complex 5D electrostatic and electromagnetic gyrokinetic equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا