No Arabic abstract
In two recent papers it is argued that the proton radius puzzle can be explained by truncating the electron scattering data to low momentum transfer and fit the rms radius in the low momentum expansion of the form factor. It is shown that this procedure is inconsistent and violates the Fourier theorem. The puzzle cannot be explained in this way.
[Background] The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. [Purpose] In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. [Method] We make use of stepwise regression techniques using the $F$-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. [Results] Starting with the precision, low four-momentum transfer ($Q^2$) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the $F$-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on $G_E$ from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-$Q^2$ data on $G_E$ to select functions which extrapolate to high $Q^2$, we find that a Pade ($N=M=1$) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, $G_E(Q^2) = ( 1 + Q^2/0.66,mathrm{GeV}^2)^{-2}$. [Conclusions] From this statistical analysis, we conclude that the electron scattering result and the muonic hydrogen result are consistent. It is the atomic hydrogen results that are the outliers.
Extracting the proton charge radius from electron scattering data requires determining the slope of the charge form factor at $Q^2$ of zero. But as experimental data never reach that limit, numerous methods for making the extraction have been proposed, though often the functions are determined after seeing the data which can lead to confirmation bias. To find functional forms that will allow for a robust extraction of the input radius for a wide variety of functional forms in order to have confidence in the extraction from upcoming low $Q^2$ experimental data such as the Jefferson Lab PRad experiment, we create a general framework for inputting form-factor functions as well as various fitting functions. The input form factors are used to generate pseudo-data with fluctuations intended to mimic the binning and random uncertainty of a given set of real data. All combinations of input functions and fit functions can then be tested repeatedly against regenerated pseudo-data. Since the input radius is known, this allows us to find fit functions that are robust for radius extractions in an objective fashion. For the range and uncertainty of the PRad data, we find that a two-parameter rational function, a two-parameter continued fraction and the second order polynomial expansion of $z$ can extract the input radius regardless of the input charge form factor function that is used. We have created an easily expandable framework to search for functional forms that allow for a robust extraction of the radius from a given binning and uncertainty of pseudo-data generated from a wide variety of trial functions. This method has enabled a successful search for the best functional forms to extract the radius from the upcoming PRad data and can be used for other experiments.
The Proton Radius Puzzle is the inconsistency between the proton radius determined from muonic hydrogen and the proton radius determined from atomic hydrogen level transitions and ep elastic scattering. No generally accepted resolution to the Puzzle has been found. Possible solutions generally fall into one of three categories: the two radii are different due to novel beyond-standard-model physics, the two radii are different due to novel aspects of nucleon structure, and the two radii are the same, but there are underestimated uncertainties or other issues in the ep experiments. The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institut is a simultaneous measurement of mu^+ p and e^+ p elastic scattering, as well as mu^- p and e^- p elastic scattering, which will allow a determination of the consistency of the mu p and the ep interactions. The differences between + and - charge scattering are sensitive to two-photon exchange effects, higher-order corrections to the scattering process. The slopes of the cross sections as Q^2 -> 0 determine the proton radius. We plan to measure relative cross sections at a typical level of a few tenths of a percent, which should allow the proton radius to be determined at the level of ~0.01 fm, similar to previous ep measurements. The measurements will test several possible explanations of the proton radius puzzle, including some models of beyond-standard-model physics, some models of novel hadronic physics, and some issues in the radius extraction from scattering data.
Background: The B(E2) transition strength to the 2+_2 state in 94Zr was initially reported to be larger by a factor of 1.63 than the one to the 2+_1 state from lifetime measurements with the Doppler-shift attenuation method (DSAM) using the (n,ngamma) reaction [E. Elhami et al., Phys. Rev. C 75, 011301(R) (2007)]. This surprising behavior was recently revised in a new measurement by the same group using the same experimental technique leading to a ratio below unity as expected in vibrational nuclei. Purpose: The goal is an independent determination of the ratio of B(E2) strengths for the transitions to the 2+_(1,2) states of 94Zr with inelastic electron scattering. Method: The relative population of the 2+_(1,2) states in (e,e) reactions was measured at the SDALINAC in a momentum transfer range q = 0.17 - 0.51 fm^(-1) and analyzed in plane-wave Born approximation with the method described in A. Scheikh Obeid et al., Phys. Rev. C 87, 014337 (2013). Results: The extracted B(E2) strength ratio of 0.789(43) between the excitation of the 2+_1 and 2+_2 states of 94Zr is consistent with but more precise than the latest (n,ngamma) experiment. Using the B(E2) transition strength to the first excited state from the literature a value of 3.9(9) W.u. is deduced for the B(E2; 2+_2 -> 0+_1) transition. Conclusions: The electron scattering result independently confirms the latest interpretation of the different (n,ngamma) results for the transition to the 2+_2 state in 94Zr.
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These data are compared to calculations employing realistic nucleon-nucleon interactions, both with and without three-nucleon forces. Excellent agreement with the tensor analyzing powers and cross section is found, while the Ay and iT11 data are found to be underpredicted by the calculations.