Do you want to publish a course? Click here

Performance evaluation of the general characteristics based off-lattice Boltzmann and DUGKS methods for low speed continuum flows: A comparative study

103   0   0.0 ( 0 )
 Added by Lianhua Zhu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The general characteristics based off-lattice Boltzmann scheme (BKG) proposed by Bardow et~al.(2006), and the discrete unified gas kinetic scheme (DUGKS) are two methods that successfully overcome the time step restriction by the collision time, which is commonly seen in many other kinetic schemes. Basically, the BKG scheme is a time splitting scheme, while the DUGKS is an un-split finite volume scheme. In this work, we first perform a theoretical analysis of the two schemes in the finite volume framework by comparing their numerical flux evaluations. It is found that the effects of collision term are considered in the reconstructions of the cell-interface distribution function in both schemes, which explains why they can overcome the time step restriction and can give accurate results even as the time step is much larger than the collision time. The difference between the two schemes lies in the treatment of the integral of the collision term, in which the Bardows scheme uses the rectangular rule while the DUGKS uses the trapezoidal rule. The performance of the two schemes, i.e., accuracy, stability, and efficiency are then compared by simulating several two dimensional flows, including the unsteady Taylor-Green vortex flow, the steady lid-driven cavity flow, and the laminar boundary layer problem. It is observed that, the DUGKS can give more accurate results than the BKG scheme. Furthermore, the numerical stability of the BKG scheme decreases as the Courant-Friedrichs-Lewy (CFL) number approaches to 1, while the stability of DUGKS is not affected by the CFL number apparently as long as CFL<1. It is also observed that the BKG scheme is about one time faster than the DUGKS scheme with the same computational mesh and time step.



rate research

Read More

235 - Yudong Zhang , Aiguo Xu , 2018
Discrete Boltzmann model (DBM) is a type of coarse-grained mesoscale kinetic model derived from the Boltzmann equation. Physically, it is roughly equivalent to a hydrodynamic model supplemented by a coarse-grained model for the relevant thermodynamic non-equilibrium (TNE) behaviours. The Navier-Stokes (NS) model is a traditional macroscopic hydrodynamic model based on continuity hypothesis and conservation laws. In this study, the two models are compared from two aspects, physical capability and computational cost, by simulating two kinds of flow problems including the thermal Couette flow and a Mach 3 step problem. In the cases where the TNE effects are weak, both the two models give accurate results for the hydrodynamic behaviour. Besides, DBM can provide more detailed non-equilibrium information, while the NS is more efficient if concern only the density, momentum, energy and their derived quantities. It is concluded that, if the TNE effects are strong or are to be investigated, the NS is insufficient while DBM is a good choice. While in the cases where the TNE effects are weak and only the macro flow fields are to be studied, the NS is more preferable.
A lattice Boltzmann model is considered in which the speed of sound can be varied independently of the other parameters. The range over which the speed of sound can be varied is investigated and good agreement is found between simulations and theory. The onset of nonlinear effects due to variations in the speed of sound is also investigated and good agreement is again found with theory. It is also shown that the fluid viscosity is not altered by changing the speed of sound.
135 - Ao Xu , Le Shi , Heng-Dong Xi 2019
We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double distribution function approach, which consists of a D3Q19 model for the Navier-Stokes equations to simulate fluid flows and a D3Q7 model for the convection-diffusion equation to simulate heat transfer. Relaxation parameters are adjusted to achieve the isotropy of the fourth-order error term in the thermal LB model. Two types of thermal convective flows are considered: one is laminar thermal convection in side-heated convection cell, which is heated from one vertical side and cooled from the other vertical side; while the other is turbulent thermal convection in Rayleigh-Benard convection cell, which is heated from the bottom and cooled from the top. In side-heated convection cell, steady results of hydrodynamic quantities and Nusselt numbers are presented at Rayleigh numbers of $10^6$ and $10^7$, and Prandtl number of 0.71, where the mesh sizes are up to $257^3$; in Rayleigh-Benard convection cell, statistical averaged results of Reynolds and Nusselt numbers, as well as kinetic and thermal energy dissipation rates are presented at Rayleigh numbers of $10^6$, $3times 10^6$, and $10^7$, and Prandtl numbers of 0.7 and 7, where the nodes within thermal boundary layer are around 8. Compared with existing benchmark data obtained by other methods, the present LB model can give consistent results.
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and investigate a new rectangular central moment LBM based on non-orthogonal moment basis (referred to as RC-LBM). The equilibria to which the central moments relax under collision in this approach are obtained from matching with those corresponding to the continuous Maxwell distribution. A Chapman-Enskog analysis is performed to derive the correction terms to the second order moment equilibria involving the grid aspect ratio and velocity gradients that restores the isotropy of the viscous stress tensor and eliminates the non-Galilean invariant cubic velocity terms of the resulting hydrodynamical equations. A special case of this rectangular formulation involving the raw moments (referred to as the RNR-LBM) is also constructed. The resulting schemes represent a considerable simplification, especially for the transformation matrices and isotropy corrections, and improvement over the existing MRT-LB schemes on rectangular lattice grids that use orthogonal moment basis. Numerical validation study of both the RC-LBM and RNR-LBM for a variety of benchmark flow problems are performed that show good accuracy at various grid aspect ratios. The ability of our proposed schemes to simulate flows using relatively lower grid aspect ratios than considered in prior rectangular LB approaches is demonstrated. Furthermore, simulations reveal the superior stability characteristics of the RC-LBM over RNR-LBM in handling shear flows at lower viscosities and/or higher characteristic velocities. In addition, computational advantages of using our rectangular LB formulation in lieu of that based on the square lattice is shown.
A two-fluid Discrete Boltzmann Model(DBM) for compressible flows based on Ellipsoidal Statistical Bhatnagar-Gross-Krook(ES-BGK) is presented. The model has flexible Prandtl number or specific heat ratio. Mathematically, the model is composed of two coupled Discrete Boltzmann Equations(DBE). Each DBE describes one component of the fluid. Physically, the model is equivalent to a macroscopic fluid model based on Navier-Stokes(NS) equations, and supplemented by a coarse-grained model for thermodynamic non-equilibrium behaviors. To obtain a flexible Prandtl number, a coefficient is introduced in the ellipsoidal statistical distribution function to control the viscosity. To obtain a flexible specific heat ratio, a parameter is introduced in the energy kinetic moments to control the extra degree of freedom. For binary mixture, the correspondence between the macroscopic fluid model and the DBM may be several-to-one. Five typical benchmark tests are used to verify and validate the model. Some interesting non-equilibrium results, which are not available in the NS model or the single-fluid DBM, are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا