No Arabic abstract
Given a finite endomorphism $varphi$ of a variety $X$ defined over the field of fractions $K$ of a Dedekind domain, we study the extension $K(varphi^{-infty}(alpha)) : = bigcup_{n geq 1} K(varphi^{-n}(alpha))$ generated by the preimages of $alpha$ under all iterates of $varphi$. In particular when $varphi$ is post-critically finite, i.e., there exists a non-empty, Zariski-open $W subseteq X$ such that $varphi^{-1}(W) subseteq W$ and $varphi : W to X$ is etale, we prove that $K(varphi^{-infty}(alpha))$ is ramified over only finitely many primes of $K$. This provides a large supply of infinite extensions with restricted ramification, and generalizes results of Aitken-Hajir-Maire in the case $X = mathbb{A}^1$ and Cullinan-Hajir, Jones-Manes in the case $X = mathbb{P}^1$. Moreover, we conjecture that this finite ramification condition characterizes post-critically finite morphisms, and we give an entirely new result showing this for $X = mathbb{P}^1$. The proof relies on Faltings theorem and a local argument.
We give a simple derivation of the formula for the number of normal elements in an extension of finite fields. Our proof is based on the fact that units in the Galois group ring of a field extension act simply transitively on normal elements.
Let E/F be a CM field split above a finite place v of F, let l be a rational prime number which is prime to v, and let S be the set of places of E dividing lv. If E_S denotes a maximal algebraic extension of E unramified outside S, and if u is a place of E dividing v, we show that any field embedding E_S to bar{E_u} has a dense image. The unramified outside S number fields we use are cut out from the l-adic cohomology of the simple Shimura varieties studied by Kottwitz and Harris-Taylor. The main ingredients of the proof are then the local Langlands correspondence for GL_n, the main global theorem of Harris-Taylor, and the construction of automorphic representations with prescribed local behaviours. We explain how stronger results would follow from the knowledge of some expected properties of Siegel modular forms, and we discuss the case of the Galois group of a maximal algebraic extension of Q unramified outside a single prime p and infinity.
If the $ell$-adic cohomology of a projective smooth variety, defined over a local field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then every model over the ring of integers of $K$ has a $k$-rational point. For $K$ a $p$-adic field, this is math/0405318, Theorem 1.1. If the model $sX$ is regular, one has a congruence $|sX(k)|equiv 1 $ modulo $|k|$ for the number of $k$-rational points 0704.1273, Theorem 1.1. The congruence is violated if one drops the regularity assumption.
In previous work, the authors confirmed the speculation of J. G. Thompson that certain multiquadratic fields are generated by specified character values of sufficiently large alternating groups $A_n$. Here we address the natural generalization of this speculation to the finite general linear groups $mathrm{GL}_mleft(mathbb{F}_qright)$ and $mathrm{SL}_2left(mathbb{F}_qright)$.
In this paper we introduce the additive analogue of the index of a polynomial over finite fields. We study several problems in the theory of polynomials over finite fields in terms of their additive indices, such as value set sizes, bounds on multiplicative character sums, and characterizations of permutation polynomials.