No Arabic abstract
A key ingredient in the Taylor-Wiles proof of Fermat last theorem is the classical Iharas lemma which is used to rise the modularity property between some congruent galoisian representations. In their work on Sato-Tate, Clozel-Harris-Taylor proposed a generalization of the Iharas lemma in higher dimension for some similitude groups. The main aim of this paper is then to prove some new instances of this generalized Iharas lemma by considering some particular non pseudo Eisenstein maximal ideals of unramified Hecke algebras. As a consequence, we prove a level rising statement.
We exhibit cases of a level fixing phenomenon for galoisian automorphic representations of a CM field $F$, with dimension $d geq 2$. The proof rests on the freeness of the localized cohomology groups of KHT Shimura varieties and the strictness of its filtration induced by the spectral sequence associated to the filtration of stratification of the nearby cycles perverse sheaf at some fixed place $v$ of $F$. The main point is the observation that the action of the unipotent monodromy operator at $v$ is then given by those on the nearby cycles where its order of nilpotency modulo $l$ equals those in characteristic zero. Finally we infer some consequences concerning level raising and Iharas lemma.
Persitence of non degeneracy is a phenomenon which appears in the theory of $overline{mathbb Q}_l$-representations of the linear group: every irreducible submodule of the restriction to the mirabolic subgroup of an non degenerate irreducible representation is non degenerate. This is no more true in general, if we look at the modulo $l$ reduction of some stable lattice. As in the Clozel-Harris-Taylor generalization of global Iharas lemma, we show that this property, called non degeneracy persitence, remains true for lattices given by the cohomology of Lubin-Tate spaces.
Using $l$-adic completed cohomology in the context of Shimura varieties of Kottwitz-Harris-Taylor type attached to some fixed similitude group $G$, we prove, allowing to increase the levet at $l$, some new automorphic congruences between any degenerate automorphic representation with a non degenerate one of the same weight.
In this paper we prove the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponent $mu$ $in$ (1/2, 1) is 2(1 -- $mu$) when $mu$ $ge$ $sqrt$ 2/2, whereas for $mu$ textless{} $sqrt$ 2/2 it is greater than 2(1 -- $mu$) and at most (3 -- 2$mu$)(1 -- $mu$)/(1 + $mu$ + $mu$ 2). We also establish that this dimension tends to 4/3 (which is the dimension of the set of singular two-dimensional vectors) when $mu$ tends to 1/2. These results improve upon previous estimates of R. Baker, joint work of the first author with M. Laurent, and unpublished work of M. Laurent. We also prove a lower bound on the packing dimension that is strictly greater than the Hausdorff dimension for $mu$ $ge$ 0.565. .. .
In [14], the authors developed a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In this paper, we extend this approach to incorporate high order approximation methods. We again rely on the fact that we can associate to the IFS a parametrized family of positive, linear, Perron-Frobenius operators $L_s$, an idea known in varying degrees of generality for many years. Although $L_s$ is not compact in the setting we consider, it possesses a strictly positive $C^m$ eigenfunction $v_s$ with eigenvalue $R(L_s)$ for arbitrary $m$ and all other points $z$ in the spectrum of $L_s$ satisfy $|z| le b$ for some constant $b < R(L_s)$. Under appropriate assumptions on the IFS, the Hausdorff dimension of the invariant set of the IFS is the value $s=s_*$ for which $R(L_s) =1$. This eigenvalue problem is then approximated by a collocation method at the extended Chebyshev points of each subinterval using continuous piecewise polynomials of arbitrary degree $r$. Using an extension of the Perron theory of positive matrices to matrices that map a cone $K$ to its interior and explicit a priori bounds on the derivatives of the strictly positive eigenfunction $v_s$, we give rigorous upper and lower bounds for the Hausdorff dimension $s_*$, and these bounds converge rapidly to $s_*$ as the mesh size decreases and/or the polynomial degree increases.