No Arabic abstract
The Milestoning method has achieved great success in the calculation of equilibrium kinetic properties such as rate constants from molecular dynamics simulations. The goal of this work is to advance Milestoning into the realm of non-equilibrium statistical mechanics, in particular, the calculation of time correlation functions. In order to accomplish this, we introduce a novel methodology for obtaining flux through a given milestone configuration as a function of both time and initial configuration, and build upon it with a novel formalism describing autocorrelation for Brownian motion in a discrete configuration space. The method is then applied to three different test systems: a harmonic oscillator, which we solve analytically, a two well potential, which is solved numerically, and an atomistic molecular dynamics simulation of alanine dipeptide.
The Milestoning algorithm created by Ron Elber et al. is a method for determining the time scale of processes too complex to be studied using brute force simulation methods. The fundamental objects implemented in the Milestoning algorithm are the first passage time distributions between adjacent protein configuration milestones. The method proposed herein aims to further enhance Milestoning by employing an artificial applied force, akin to wind, which pushes the trajectories from their initial states to their final states, and subsequently re-weights the trajectories to yield the true first passage time distributions in a fraction of the computation time required for unassisted calculations. The re-weighting method, rooted in Itos stochastic calculus, was adapted from previous work by Andricioaei et al. The theoretical basis for this technique and numerical examples are presented.
Stochastic mechanics---the study of classical stochastic systems governed by things like master equations and Fokker-Planck equations---exhibits striking mathematical parallels to quantum mechanics. In this article, we make those parallels more transparent by presenting a quantum mechanics-like formalism for deriving a path integral description of systems described by stochastic differential equations. Our formalism expediently recovers the usual path integrals (the Martin-Siggia-Rose-Janssen-De Dominicis and Onsager-Machlup forms) and is flexible enough to account for different variable domains (e.g. real line versus compact interval), stochastic interpretations, arbitrary numbers of variables, explicit time-dependence, dimensionful control parameters, and more. We discuss the implications of our formalism for stochastic biology.
In stochastic thermodynamics standard concepts from macroscopic thermodynamics, such as heat, work, and entropy production, are generalized to small fluctuating systems by defining them on a trajectory-wise level. In Langevin systems with continuous state-space such definitions involve stochastic integrals along system trajectories, whose specific values depend on the discretization rule used to evaluate them (i.e. the interpretation of the noise terms in the integral). Via a systematic mathematical investigation of this apparent dilemma, we corroborate the widely used standard interpretation of heat- and work-like functionals as Stratonovich integrals. We furthermore recapitulate the anomalies that are known to occur for entropy production in the presence of temperature gradients.
Quantum many-body systems are characterized by patterns of correlations that define highly-non trivial manifolds when interpreted as data structures. Physical properties of phases and phase transitions are typically retrieved via simple correlation functions, that are related to observable response functions. Recent experiments have demonstrated capabilities to fully characterize quantum many-body systems via wave-function snapshots, opening new possibilities to analyze quantum phenomena. Here, we introduce a method to data mine the correlation structure of quantum partition functions via their path integral (or equivalently, stochastic series expansion) manifold. We characterize path-integral manifolds generated via state-of-the-art Quantum Monte Carlo methods utilizing the intrinsic dimension (ID) and the variance of distances from nearest neighbors (NN): the former is related to dataset complexity, while the latter is able to diagnose connectivity features of points in configuration space. We show how these properties feature universal patterns in the vicinity of quantum criticality, that reveal how data structures {it simplify} systematically at quantum phase transitions. This is further reflected by the fact that both ID and variance of NN-distances exhibit universal scaling behavior in the vicinity of second-order and Berezinskii-Kosterlitz-Thouless critical points. Finally, we show how non-Abelian symmetries dramatically influence quantum data sets, due to the nature of (non-commuting) conserved charges in the quantum case. Complementary to neural network representations, our approach represents a first, elementary step towards a systematic characterization of path integral manifolds before any dimensional reduction is taken, that is informative about universal behavior and complexity, and can find immediate application to both experiments and Monte Carlo simulations.
We consider Euclidean path integrals with higher derivative actions, including those that depend quadratically on acceleration, velocity and position. Such path integrals arise naturally in the study of stiff polymers, membranes with bending rigidity as well as a number of models for electrolytes. The approach used is based on the relation between quadratic path integrals and Gaussian fields and we also show how it can be extended to the evaluation of even higher order path integrals.