No Arabic abstract
A highly strained BiFeO3 (BFO) thin film is transformed between phases with distinct structures and properties by nanosecond-duration applied electric field pulses. Time-resolved synchrotron x-ray microdiffraction shows that the steady-state transformation between phases is accompanied by a dynamical component that is reversed upon the removal of the field. Steady-state measurements reveal that approximately 20% of the volume of a BFO thin film grown on a LaAlO3 substrate can be reproducibly transformed between rhombohedral-like and tetragonal-like phases by electric field pulses with magnitudes up to 2 MV/cm. A transient component, in which the transformation is reversed following the end of the electric field pulse, can transform a similar fraction of the BFO layer and occurs rapidly time scale limited by the charging time constant of the thin film capacitor. The piezoelectric expansion of the tetragonal-like phase leads to a strain of up to 0.1%, with a lower limit of 10 pm/V for the piezoelectric coefficient of this phase. Density functional theory calculations provide insight into the mechanism of the phase transformation showing that imparting a transient strain of this magnitude favors a transformation from rhombohedral-like to tetragonal-like phase.
BiFeO3 thin films with various thicknesses were grown epitaxially on (001) LaSrAlO4 single crystal substrates using pulsed laser deposition. High resolution x-ray diffraction measurements revealed that a tetragonal-like phase with c-lattice constant ~4.65 {AA} is stabilized by a large misfit strain. Besides, a rhombohedral-like phase with c-lattice constant ~3.99 {AA} was also detected at film thickness of ~50 nm and above to relieve large misfit strains. In-plane piezoelectric force microscopy studies showed clear signals and self-assembled nanoscale stripe domain structure for the tetragonal-like regions. These findings suggest a complex picture of nanoscale domain patterns in BiFeO3 thin films subjected to large compressive strains.
We report a Raman scattering investigation of multiferroic bismuth ferrite BiFeO3 epitaxial (c-axis oriented) thin films from -192 to 1000C. Phonon anomalies have been observed in three temperature regions: in the gamma-phase from 930C to 950C; at ~370C, Neel temperature (TN), and at ~123C, due to a phase transition of unknown type (magnetic or structural). An attempt has been made to understand the origin of the weak phonon-magnon coupling and the dynamics of the phase sequence. The disappearance of several Raman modes at ~820C (Tc) is compatible with the known structural phase transition and the Pbnm orthoferrite space group assigned by Arnold {it et al.} cite{arnold:09}. The spectra also revealed a {it non-cubic} $beta$-phase from 820-930dc and the same {it non-cubic} phase extends through the $gamma$-phase between 930-950dc, in agreement with Arnold {it et al.} cite{arnold2:09}, and an evidence of a cubic $delta$-phase around 1000dc in thin films that is not stable in powder and bulk. Such a cubic phase has been theoretically predicted in cite{vasquez:prb09}. Micro-Raman scattering and X-ray diffraction showed no structural decomposition in thin films during the thermal cycling from 22-1000dc.
We present the temperature- and thickness-dependent structural and morphological evolution of strain induced transformations in highly-strained epitaxial BiFeO3 films deposited on LaAlO3 (001) substrates. Using high-resolution X-ray diffraction and temperature-dependent scanning-probe-based studies we observe a complex temperature- and thickness-dependent evolution of phases in this system. A thickness-dependent transformation from a single monoclinically distorted tetragonal-like phase to a complex mixed-phase structure in films with thicknesses up to ~200 nm is the consequence of a strain-induced spinodal instability in the BiFeO3/LaAlO3 system. Additionally, a breakdown of this strain-stabilized metastable mixed-phase structure to non-epitaxial microcrystals of the parent rhombohedral structure of BiFeO3 is observed to occur at a critical thickness of ~300 nm. We further propose a mechanism for this abrupt breakdown that provides insight into the competing nature of the phases in this system.
The domain wall induced reversal dynamics in compressively strained GaMnAs was studied employing the magneto-optical Kerr effect and Kerr microscopy. Due to the influence of an uniaxial part in the in-plane magnetic anisotropy (90+/-Delta) domain walls with considerably different dynamic behavior are observed. While the (90+Delta) reversal is identified to be propagation dominated with a small number of domain walls, the case of (90-Delta) reversal includes the nucleation of many domain walls. The domain wall nucleation/propagation energy for both transitions are estimated using model calculations from which we conclude that single domain devices can be achievable using the (90+Delta) mode.
Lattice structure can dictate electronic and magnetic properties of a material. Especially, reconstruction at a surface or heterointerface can create properties that are fundamentally different from those of the corresponding bulk material. We have investigated the lattice structure on the surface and in the thin films of epitaxial SrRuO3 with the film thickness up to 22 pseudo-cubic unit cells (u.c.), using the combination of surface sensitive low energy electron diffraction and bulk sensitive scanning transmission electron microscopy. Our analysis indicates that, in contrast to many perovskite oxides, the RuO6 tilt and rotational distortions appear even in single unit cell SrRuO3 thin films on cubic SrTiO3, while the full relaxation to the bulk-like orthorhombic structure takes 3-4 u.c. from the interface for thicker films. Yet the TiO6 octahedra of the substrate near the interface with SrRuO3 films show no sign of distortion, unlike those near the interface with CaRuO3 films. Two orthogonal in-plane rotated structural domains are identified. These structural distortions are essential for the nature of the thickness dependent transport and magnetism in ultrathin films.