Do you want to publish a course? Click here

Spin-dependent direct gap emission in tensile-strained Ge films on Si substrates

78   0   0.0 ( 0 )
 Added by Fabio Pezzoli
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The circular polarization of direct gap emission of Ge is studied in optically-excited tensile-strained Ge-on-Si heterostructures as a function of doping and temperature. Owing to the spin-dependent optical selection rules, the radiative recombinations involving strain-split light (cG-LH) and heavy hole (cG-HH) bands are unambiguously resolved. The fundamental cG-LH transition is found to have a low temperature circular polarization degree of about 85% despite an off-resonance excitation of more than 300 meV. By photoluminescence (PL) measurements and tight binding calculations we show that this exceptionally high value is due to the peculiar energy dependence of the optically-induced electron spin population. Finally, our observation of the direct gap doublet clarifies that the light hole contribution, previously considered to be negligible, can dominate the room temperature PL even at low tensile strain values of about 0.2%.



rate research

Read More

266 - Xin Huang , Qingyu Xu , Shuai Dong 2014
The strain tuned magnetism of YTiO$_3$ film grown on the LaAlO$_3$ ($110$) substrate is studied by the method of the first principles, and compared with that of the ($001$)-oriented one. The obtained magnetism is totally different, which is ferromagnetic for the film on the ($110$) substrate but A-type antiferromagnetic on the ($001$) one. This orientation-dependent magnetism is attributed to the subtle orbital ordering of YTiO$_3$ film. The $d_{xz}$/$d_{yz}$-type orbital ordering is predominant for the ($001$) one, but for the ($110$) case, the $d_{xy}$ orbital is mostly occupied plus a few contribution from the $d_{xz}$/$d_{yz}$ orbital. Moreover, the lattice mismatch is modest for the ($110$) case but more serious for the ($001$) one, which is also responsible for this contrasting magnetism.
We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in micron-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.
The enigma of the emergent ferromagnetic state in tensile-strained LaCoO3 thin films remains to be explored because of the lack of a well agreed explanation. The direct magnetic imaging technique using a low-temperature magnetic force microscope (MFM) is critical to reveal new aspects of the ferromagnetism by investigating the lateral magnetic phase distribution. Here we show the experimental demonstration of the rare halved occupation of the ferromagnetic state in tensile-strained LaCoO3 thin films on SrTiO3 substrates using the MFM. The films have uniformly strained lattice structure and minimal oxygen vacancies (less than 2%) beyond the measurement limit. It is found that percolated ferromagnetic regions with typical sizes between 100 nm and 200 nm occupy about 50% of the entire film, even down to the lowest achievable temperature of 4.5 K and up to the largest magnetic field of 13.4 T. Preformed ferromagnetic droplets were still observed when the temperature is 20 K above the Curie temperature indicating the existence of possible Griffiths phase. Our study demonstrated a sub-micron level phase separation in high quality LaCoO3 thin films, which has substantial implications in revealing the intrinsic nature of the emergent ferromagnetism.
Strong Rashba effects at surfaces and interfaces have attracted great attention for basic scientific exploration and practical applications. Here, the first-principles investigation shows that giant and tunable Rashba effects can be achieved in KTaO$_3$ (KTO) ultrathin films by applying biaxial stress. When increasing the in-plane compressive strain nearly to -5%, the Rashba spin splitting energy reaches $E_{R}=140$ meV, approximately corresponding to the Rashba coupling constant $alpha_{R}=1.3$ eV {AA}. We investigate its strain-dependent crystal structures, energy bands, and related properties, and thereby elucidate the mechanism for the giant Rashba effects. Furthermore, we show that giant Rashba spin splitting can be kept in the presence of SrTiO$_3$ capping layer and/or Si substrate, and strong circular photogalvanic effect can be achieved to generate spin-polarized currents in the KTO thin films or related heterostructures, which are promising for future spintronic and optoelectronic applications.
Transport and magnetic properties of LSMO manganite thin films and bicrystal junctions were investigated. Manganite films were epitaxially grown on STO, LAO, NGO and LSAT substrates and their magnetic anisotropy were determined by two techniques of magnetic resonance spectroscopy. Compare with cubic substrates a small (about 0.3 persentage), the anisotropy of the orthorhombic NGO substrate leads to a uniaxial anisotropy of the magnetic properties of the films in the plane of the substrate. Samples with different tilt of crystallographic basal planes of manganite as well as bicrystal junctions with rotation of the crystallographic axes (RB - junction) and with tilting of basal planes (TB - junction) were investigated. It was found that on vicinal NGO substrates the value of magnetic anisotropy could be varied by changing the substrate inclination angle from 0 to 25 degrees. Measurement of magnetic anisotropy of manganite bicrystal junction demonstrated the presence of two ferromagnetically ordered spin subsystems for both types of bicrystal boundaries RB and TB. The magnitude of the magnetoresistance for TB - junctions increased with decreasing temperature and with the misorientation angle even misorientation of easy axes in the parts of junction does not change. Analysis of the voltage dependencies of bicrystal junction conductivity show that the low value of the magnetoresistance for the LSMO bicrystal junctions can be caused by two scattering mechanisms with the spin- flip of spin - polarized carriers due to the strong electron - electron interactions in a disordered layer at the bicrystal boundary at low temperatures and the spin-flip by anti ferromagnetic magnons at high temperatures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا