The electronic structure of the transparent semiconductor In2O3 has been studied by angle resolved photoemission spectroscopy upon deposition of metallic indium and also tin on the surface of the semiconductor. By deposition of metallic indium on In2O3 (111) single crystals, we detected the formation of a free-electron like band of effective mass (0.38+-0.05) m0. At low coverages, metallic In shifts the Fermi level of In2O3 to higher energies and a new electronic state forms at the metal/semiconductor interface. This state of two-dimensional character (2D-electron gas) is completely responsible for the electrical conduction in In2O3 (111) at the surface region and has a band dispersion, which does not correspond to the previously found surface accumulation layers in this material. Despite the similarity of the electronic properties of In and Sn, a larger downward banding was observed by Sn coverage, which was not accompanied by the appearance of the surface state.