No Arabic abstract
Multivariate space-time data are increasingly available in various scientific disciplines. When analyzing these data, one of the key issues is to describe the multivariate space-time dependencies. Under the Gaussian framework, one needs to propose relevant models for multivariate space-time covariance functions, i.e. matrix-valued mappings with the additional requirement of non-negative definiteness. We propose a flexible parametric class of cross-covariance functions for multivariate space-time Gaussian random fields. Space-time components belong to the (univariate) Gneiting class of space-time covariance functions, with Matern or Cauchy covariance functions in the spatial margins. The smoothness and scale parameters can be different for each variable. We provide sufficient conditions for positive definiteness. A simulation study shows that the parameters of this model can be efficiently estimated using weighted pairwise likelihood, which belongs to the class of composite likelihood methods. We then illustrate the model on a French dataset of weather variables.
We characterize completely the Gneiting class of space-time covariance functions and give more relaxed conditions on the involved functions. We then show necessary conditions for the construction of compactly supported functions of the Gneiting type. These conditions are very general since they do not depend on the Euclidean norm. Finally, we discuss a general class of positive definite functions, used for multivariate Gaussian random fields. For this class, we show necessary criteria for its generator to be compactly supported.
With the advent of wide-spread global and continental-scale spatiotemporal datasets, increased attention has been given to covariance functions on spheres over time. This paper provides results for stationary covariance functions of random fields defined over $d$-dimensional spheres cross time. Specifically, we provide a bridge between the characterization in cite{berg-porcu} for covariance functions on spheres cross time and Gneitings lemma citep{gneiting2002} that deals with planar surfaces. We then prove that there is a valid class of covariance functions similar in form to the Gneiting class of space-time covariance functions citep{gneiting2002} that replaces the squared Euclidean distance with the great circle distance. Notably, the provided class is shown to be positive definite on every $d$-dimensional sphere cross time, while the Gneiting class is positive definite over $R^d times R$ for fixed $d$ only. In this context, we illustrate the value of our adapted Gneiting class by comparing examples from this class to currently established nonseparable covariance classes using out-of-sample predictive criteria. These comparisons are carried out on two climate reanalysis datasets from the National Centers for Environmental Prediction and National Center for Atmospheric Research. For these datasets, we show that examples from our covariance class have better predictive performance than competing models.
The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decompositions. The decompositions that we employ are intuitive, easy to understand, and they do not rely on any assumptions such as the presence of an ordering among the multivariate responses. The regression submodels are semiparametric, with unknown functions represented by basis function expansions. We use spike-slap priors for the regression coefficients to achieve variable selection and function regularization, and to obtain parameter estimates that account for model uncertainty. An efficient Markov chain Monte Carlo algorithm for posterior sampling is developed. The simulation studies presented investigate the effects of priors on posteriors, the gains that one may have when considering multivariate longitudinal analyses instead of univariate ones, and whether these gains can counteract the negative effects of missing data. We apply the methods on a highly unbalanced longitudinal dataset with four responses observed over of period of 20 years
Flexible multivariate covariance models for spatial data are on demand. This paper addresses the problem of parametric constraints for positive semidefiniteness of the multivariate Mat{e}rn model. Much attention has been given to the bivariate case, while highly multivariate cases have been explored to a limited extent only. The existing conditions often imply severe restrictions on the upper bounds for the collocated correlation coefficients, which makes the multivariate Mat{e}rn model appealing for the case of weak spatial cross-dependence only. We provide a collection of validity conditions for the multivariate Mat{e}rn covariance model that allows for more flexible parameterizations than those currently available. We also prove that, in several cases, we can attain much higher upper bounds for the collocated correlation coefficients in comparison with our competitors. We conclude with a simple illustration on a trivariate geochemical dataset and show that our enlarged parametric space allows for better fitting performance with respect to our competitors.
A new class of copulas, termed the MGL copula class, is introduced. The new copula originates from extracting the dependence function of the multivariate generalized log-Moyal-gamma distribution whose marginals follow the univariate generalized log-Moyal-gamma (GLMGA) distribution as introduced in citet{li2019jan}. The MGL copula can capture nonelliptical, exchangeable, and asymmetric dependencies among marginal coordinates and provides a simple formulation for regression applications. We discuss the probabilistic characteristics of MGL copula and obtain the corresponding extreme-value copula, named the MGL-EV copula. While the survival MGL copula can be also regarded as a special case of the MGB2 copula from citet{yang2011generalized}, we show that the proposed model is effective in regression modelling of dependence structures. Next to a simulation study, we propose two applications illustrating the usefulness of the proposed model. This method is also implemented in a user-friendly R package: texttt{rMGLReg}.