No Arabic abstract
We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that WVA experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.
In a quantum-noise limited system, weak-value amplification using post-selection normally does not produce more sensitive measurements than standard methods for ideal detectors: the increased weak value is compensated by the reduced power due to the small post-selection probability. Here we experimentally demonstrate recycled weak-value measurements using a pulsed light source and optical switch to enable nearly deterministic weak-value amplification of a mirror tilt. Using photon counting detectors, we demonstrate a signal improvement by a factor of $4.4 pm 0.2$ and a signal-to-noise ratio improvement of $2.10 pm 0.06$, compared to a single-pass weak-value experiment, and also compared to a conventional direct measurement of the tilt. The signal-to-noise ratio improvement could reach around 6 for the parameters of this experiment, assuming lower loss elements.
The optical interferometry has been widely used in various high precision applications. Usually, the minimum precision of an interferometry is limited by various technique noises in practice. To suppress such kind of noises, we propose a novel scheme, which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal noise ratio and the robustness against noises caused by the optical elements reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value requires a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting $n$ ancillas, the postselection probability can be increased by a factor of $n$ while keeping the weak value fixed (compared to $n$ uncorrelated attempts with one ancilla), which is the optimal scaling with $n$ that is expected from quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive estimation to approximately saturate the optimal quantum Cram{e}r-Rao bound. To illustrate this protocol we provide simple quantum circuits that can be implemented using current experimental realizations of three entangled qubits.
Second-order nonlinear optical processes are used to convert light from one wavelength to another and to generate quantum entanglement. Creating chip-scale devices to more efficiently realize and control these interactions greatly increases the reach of photonics. Optical crystals and guided wave devices made from lithium niobate and potassium titanyl phosphate are typically used to realize second-order processes but face significant drawbacks in scalability, power, and tailorability when compared to emerging integrated photonic systems. Silicon or silicon nitride integrated photonic circuits enhance and control the third-order optical nonlinearity by confining light in dispersion-engineered waveguides and resonators. An analogous platform for second-order nonlinear optics remains an outstanding challenge in photonics. It would enable stronger interactions at lower power and reduce the number of competing nonlinear processes that emerge. Here we demonstrate efficient frequency doubling and parametric oscillation in a thin-film lithium niobate photonic circuit. Our device combines recent progress on periodically poled thin-film lithium niobate waveguidesand low-loss microresonators. Here we realize efficient >10% second-harmonic generation and parametric oscillation with microwatts of optical power using a periodically-poled thin-film lithium niobate microresonator. The operating regimes of this system are controlled using the relative detuning of the intracavity resonances. During nondegenerate oscillation, the emission wavelength is tuned over terahertz by varying the pump frequency by 100s of megahertz. We observe highly-enhanced effective third-order nonlinearities caused by cascaded second-order processes resulting in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.
Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources to long-sought quantum repeaters. Despite the availability of strong light-atom interaction, an all-optical nonlinearity is highly desired for more scalable quantum protocols. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with a record-high second-order optical nonlinearity of $1.5%$---the ratio of the single-photon trimodal coupling strength ($g/2pi=11.2$ MHz) and cavity-photon loss rate. We demonstrate photon-pair generation via degenerate spontaneous parametric down conversion in the InGaP photonic circuit with an ultrahigh rate exceeding 27.5 MHz per 1 $mu$W pump power and large coincidence-to-accidental ratio up to $1.4times 10^4$. Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.