No Arabic abstract
Intelligent load balancing is essential to fully realize the benefits of dense heterogeneous networks. Current techniques have largely been studied with single slope path loss models, though multi-slope models are known to more closely match real deployments. This paper develops insight into the performance of biasing and uplink/downlink decoupling for user association in HetNets with dual slope path loss models. It is shown that dual slope path loss models change the tradeoffs inherent in biasing and reduce gains from both biasing and uplink/downlink decoupling. The results show that with the dual slope path loss models, the bias maximizing the median rate is not optimal for other users, e.g., edge users. Furthermore, optimal downlink biasing is shown to realize most of the gains from downlink-uplink decoupling. Moreover, the user association gains in dense networks are observed to be quite sensitive to the path loss exponent beyond the critical distance in a dual slope model.
Two key traits of 5G cellular networks are much higher base station (BS) densities - especially in the case of low-power BSs - and the use of massive MIMO at these BSs. This paper explores how massive MIMO can be used to jointly maximize the offloading gains and minimize the interference challenges arising from adding small cells. We consider two interference management approaches: joint transmission (JT) with local precoding, where users are served simultaneously by multiple BSs without requiring channel state information exchanges among cooperating BSs, and resource blanking, where some macro BS resources are left blank to reduce the interference in the small cell downlink. A key advantage offered by massive MIMO is channel hardening, which enables to predict instantaneous rates a priori. This allows us to develop a unified framework, where resource allocation is cast as a network utility maximization (NUM) problem, and to demonstrate large gains in cell-edge rates based on the NUM solution. We propose an efficient dual subgradient based algorithm, which converges towards the NUM solution. A scheduling scheme is also proposed to approach the NUM solution. Simulations illustrate more than 2x rate gain for 10th percentile users vs. an optimal association without interference management.
A scalable framework is developed to allocate radio resources across a large number of densely deployed small cells with given traffic statistics on a slow timescale. Joint user association and spectrum allocation is first formulated as a convex optimization problem by dividing the spectrum among all possible transmission patterns of active access points (APs). To improve scalability with the number of APs, the problem is reformulated using local patterns of interfering APs. To maintain global consistency among local patterns, inter-cluster interaction is characterized as hyper-edges in a hyper-graph with nodes corresponding to neighborhoods of APs. A scalable solution is obtained by iteratively solving a convex optimization problem for bandwidth allocation with reduced complexity and constructing a global spectrum allocation using hyper-graph coloring. Numerical results demonstrate the proposed solution for a network with 100 APs and several hundred user equipments. For a given quality of service (QoS), the proposed scheme can increase the network capacity several fold compared to assigning each user to the strongest AP with full-spectrum reuse.
This paper explores the potential of wireless power transfer (WPT) in massive multiple input multiple output (MIMO) aided heterogeneous networks (HetNets), where massive MIMO is applied in the macrocells, and users aim to harvest as much energy as possible and reduce the uplink path loss for enhancing their information transfer. By addressing the impact of massive MIMO on the user association, we compare and analyze two user association schemes. We adopt the linear maximal ratio transmission beam-forming for massive MIMO power transfer to recharge users. By deriving new statistical properties, we obtain the exact and asymptotic expressions for the average harvested energy. Then we derive the average uplink achievable rate under the harvested energy constraint.
Rail transportation, especially, high-speed rails (HSR), is an important infrastructure for the development of national economy and the promotion of passenger experience. Due to the large bandwidth, millimeter wave (mmWave) communication is regarded as a promising technology to meet the demand of high data rates. However, since mmWave communication has the characteristic of high attenuation, mobile relay (MR) is considered in this paper. Also, full-duplex (FD) communications have been proposed to improve the spectral efficiency. However, because of the high speed, as well as the problem of penetration loss, passengers on the train have a poor quality of service. Consequently, an effective user association scheme for HSR in mmWave band is necessary. In this paper, we investigate the user association optimization problem in mmWave mobilerelay systems where the MRs operate in the FD mode. To maximize the system capacity, we propose a cooperative user association approach based on coalition formation game, and develop a coalition formation algorithm to solve the challenging NP-hard problem. We also prove the convergence and Nashstable property of the proposed algorithm. Extensive simulations are done to show the system performance of the proposed scheme under various network settings. It is demonstrated that the proposed distributed low complexity scheme achieves a nearoptimal performance and outperforms two baseline schemes in terms of average system throughput.
In this paper, we investigate the impact of network densification on the performance in terms of downlink signal-to-interference (SIR) coverage probability and network area spectral efficiency (ASE). A sophisticated bounded dual-slope path loss model and practical user equipment (UE) densities are incorporated in the analysis, which have never been jointly considered before. By using stochastic geometry, we derive an integral expression along with closed-form bounds of the coverage probability and ASE, validated by simulation results. Through these, we provide the asymptotic behavior of ultra-densification. The coverage probability and ASE have non-zero convergence in asymptotic regions unless UE density goes to infinity (full load). Meanwhile, the effect of UE density on the coverage probability is analyzed. The coverage probability will reveal an U-shape for large UE densities due to interference fall into the near-field, but it will keep increasing for low UE densites. Furthermore, our results indicate that the performance is overestimated without applying the bounded dual-slope path loss model. The derived expressions and results in this work pave the way for future network provisioning.