$a_0-f_0$ mixing in the Khuri-Treiman equations for $etato 3pi$


Abstract in English

A reliable determination of the isospin breaking double quark mass ratio from precise experimental data on $etato 3pi$ decays should be based on the chiral expansion of the amplitude supplemented with a Khuri-Treiman type dispersive treatment of the final-state interactions. We discuss an extension of this formalism which allows to estimate the effects of the $a_0(980)$ and $f_0(980)$ resonances and their mixing on the $etato 3pi$ amplitudes. Matrix generalisations of the equations describing elastic $pipi$ rescattering with $I=0,,2$ are introduced which accomodate both $pipi/Kbar{K}$ and $etapi/Kbar{K}$ coupled-channel rescattering. Isospin violation induced by the physical $K^+-K^0$ mass difference and by direct $u-d$ mass difference effects are both accounted for in the dispersive integrals. Numerical solutions are constructed which illustrate how the large resonance effects at 1 GeV propagate down to low energies. They remain small in the physical region of the decay, due to the matching constraints with the NLO chiral amplitude, but they are not negligible and go in the sense of further improving the agreement with experiment for the Dalitz plot parameters.

Download