No Arabic abstract
We derive and analyze the low-activity and low-density expansions of the pressure for the model of a hard-sphere gas on cubic lattices of general dimension $d$, through the 13th order. These calculations are based on our recent extension to dimension d of the low-temperature expansions for the specific free-energy of the spin-1/2 Ising models subject to a uniform magnetic field on the (hyper-)simple-cubic lattices. Estimates of the model parameters are given also for some other lattices
High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter into a sequence of universal amplitude-ratios which determine the critical equation of state. We have obtained a substantial extension through order 24, of the high-temperature expansions of the free energy (in presence of a magnetic field) for the Ising models with spin s >= 1/2 and for the lattice scalar field theory with quartic self-interaction, on the simple-cubic and the body-centered-cubic lattices in four, five and six spatial dimensions. A numerical analysis of the higher susceptibilities obtained from these expansions, yields results consistent with the widely accepted ideas, based on the renormalization group and the constructive approach to Euclidean quantum field theory, concerning the no-interaction (triviality) property of the continuum (scaling) limit of spin-s Ising and lattice scalar-field models at and above the upper critical dimensionality.
We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J.A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in press (2009)].
This paper deals with the partition function of the Ising model from statistical mechanics, which is used to study phase transitions in physical systems. A special case of interest is that of the Ising model with constant energies and external field. One may consider such an Ising system as a simple graph together with vertex and edge weights. When these weights are considered indeterminates, the partition function for the constant case is a trivariate polynomial Z(G;x,y,z). This polynomial was studied with respect to its approximability by L. A. Goldberg, M. Jerrum and M. Paterson in 2003. Z(G;x,y,z) generalizes a bivariate polynomial Z(G;t,y), which was studied by D. Andr{e}n and K. Markstr{o}m in 2009. We consider the complexity of Z(G;t,y) and Z(G;x,y,z) in comparison to that of the Tutte polynomial, which is well-known to be closely related to the Potts model in the absence of an external field. We show that Z(G;x,y,z) is #P-hard to evaluate at all points in $mathbb{Q}^3$, except those in an exception set of low dimension, even when restricted to simple graphs which are bipartite and planar. A counting version of the Exponential Time Hypothesis, #ETH, was introduced by H. Dell, T. Husfeldt and M. Wahl{e}n in 2010 in order to study the complexity of the Tutte polynomial. In analogy to their results, we give a dichotomy theorem stating that evaluations of Z(G;t,y) either take exponential time in the number of vertices of $G$ to compute, or can be done in polynomial time. Finally, we give an algorithm for computing Z(G;x,y,z) in polynomial time on graphs of bounded clique-width, which is not known in the case of the Tutte polynomial.
We consider $N$ particles in the plane influenced by a general external potential that are subject to the Coulomb interaction in two dimensions at inverse temperature $beta$. At large temperature, when scaling $beta=2c/N$ with some fixed constant $c>0$, in the large-$N$ limit we observe a crossover from Ginibres circular law or its generalization to the density of non-interacting particles at $beta=0$. Using several different methods we derive a partial differential equation of generalized Liouville type for the crossover density. For radially symmetric potentials we present some asymptotic results and give examples for the numerical solution of the crossover density. These findings generalise previous results when the interacting particles are confined to the real line. In that situation we derive an integral equation for the resolvent valid for a general potential and present the analytic solution for the density in case of a Gaussian plus logarithmic potential.
The collective dynamics of liquid Gallium close to the melting point has been studied using Inelastic X-ray Scattering to probe lengthscales smaller than the size of the first coordination shell. %(momentum transfers, $Q$, $>$15 nm$^{-1}$). Although the structural properties of this partially covalent liquid strongly deviate from a simple hard-sphere model, the dynamics, as reflected in the quasi-elastic scattering, are beautifully described within the framework of the extended heat mode approximation of Enskogs kinetic theory, analytically derived for a hard spheres system. The present work demonstrates the applicability of Enskogs theory to non hard- sphere and non simple liquids.