Do you want to publish a course? Click here

Dense Gas Fraction and Star Formation Efficiency Variations in the Antennae Galaxies

105   0   0.0 ( 0 )
 Added by Frank Bigiel
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the CARMA millimeter interferometer to map the Antennae Galaxies (NGC4038/39), tracing the bulk of the molecular gas via the 12CO(1-0) line and denser molecular gas via the high density transitions HCN(1-0), HCO+(1-0), CS(2-1), and HNC(1-0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified supergiant molecular clouds. We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (SFR/H2~IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of 6 within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in mm-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO+(1-0) emission is stronger than HCN(1-0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.



rate research

Read More

We study the relationship between dense gas and star formation in the Antennae galaxies by comparing ALMA observations of dense gas tracers (HCN, HCO$^+$, and HNC $mathrm{J}=1-0$) to the total infrared luminosity ($mathrm{L_{TIR}}$) calculated using data from the textit{Herschel} Space Observatory and the textit{Spitzer} Space Telescope. We compare the luminosities of our SFR and gas tracers using aperture photometry and employing two methods for defining apertures. We taper the ALMA dataset to match the resolution of our $mathrm{L_{TIR}}$ maps and present new detections of dense gas emission from complexes in the overlap and western arm regions. Using OVRO CO $mathrm{J}=1-0$ data, we compare with the total molecular gas content, $mathrm{M(H_2)_{tot}}$, and calculate star formation efficiencies and dense gas mass fractions for these different regions. We derive HCN, HCO$^+$ and HNC upper limits for apertures where emission was not significantly detected, as we expect emission from dense gas should be present in most star-forming regions. The Antennae extends the linear $mathrm{L_{TIR}-L_{HCN}}$ relationship found in previous studies. The $mathrm{L_{TIR}-L_{HCN}}$ ratio varies by up to a factor of $sim$10 across different regions of the Antennae implying variations in the star formation efficiency of dense gas, with the nuclei, NGC 4038 and NGC 4039, showing the lowest SFE$_mathrm{dense}$ (0.44 and 0.70 $times10^{-8}$ yr$^{-1}$). The nuclei also exhibit the highest dense gas fractions ($sim 9.1%$ and $sim7.9%$).
We use Atacama Large Millimeter Array CO(3-2) observations in conjunction with optical observations from the Hubble Space Telescope to determine the ratio of stellar to gas mass for regions in the Antennae Galaxies. We adopt the term instantaneous mass ratio IMR(t) = M$_{stars}$/(M$_{gas}$ +M$_{stars}$), that is equivalent to the star formation efficiency for an idealized system at t = 0. We use two complementary approaches to determining the IMR(t) based on 1) the enclosed stellar and molecular mass within circular apertures centered on optically-identified clusters, and 2) a tessellation algorithm that defines regions based on CO emission. We find that only a small number of clusters appear to have IMR(0) = SFE > 0.2, which suggests that only a small fraction of these clusters will remain bound. The results suggest that by ages of $10^{6.7}$ years, some clusters will have lost all of their associated molecular gas, and by $10^{7.5}$ years this is true for the majority of clusters. There appears to be slight dependence of the IMR(t) on the CO surface brightness, which could support the idea that dense molecular environments are more likely to form bound clusters. However, the IMR(t) appears to have a strong dependence on extinction, which likely traces the evolutionary state of clusters.
By combining two surveys covering a large fraction of the molecular material in the Galactic disk we investigate the role the spiral arms play in the star formation process. We have matched clumps identified by ATLASGAL with their parental GMCs as identified by SEDIGISM, and use these giant molecular cloud (GMC) masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGF$_{rm gmc}=sum M_{rm clump}/M_{rm gmc}$) and the instantaneous star forming efficiencies (i.e., SFE$_{rm gmc} = sum L_{rm clump}/M_{rm gmc}$). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms ($sim$60% found within $pm$10 km s$^{-1}$ of an arm). We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and HI to H$_2$ conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of a any physical process.
We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the luminosity gap between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.
It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M51 in 33GHz radio continuum, an extinction-free tracer of star formation, at 3 scales (~100pc). We combined this map with interferometric PdBI/NOEMA observations of CO(1-0) and HCN(1-0) at matched resolution for three regions in M51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M51, e.g. the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite having a high dense gas fraction. Combining our results with measurements from the literature at 100pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا