No Arabic abstract
The dust-content of damped Lyman-alpha systems (DLAs) is an important observable for understanding their origin and the neutral gas reservoirs of galaxies. While the average colour-excess of DLAs, E(B-V), is known to be <15 milli-magnitudes (mmag), both detections and non-detections with ~2 mmag precision have been reported. Here we find 3.2-sigma statistical evidence for DLA dust-reddening of 774 Sloan Digital Sky Survey (SDSS) quasars by comparing their fitted spectral slopes to those of ~7000 control quasars. The corresponding E(B-V) is 3.0 +/- 1.0 mmag, assuming a Small Magellanic Cloud (SMC) dust extinction law, and it correlates strongly (3.5-sigma) with the metal content, characterised by the SiII1526 absorption-line equivalent width, providing additional confidence that the detection is due to dust in the DLAs. Evolution of E(B-V) over the redshift range 2.1 < z < 4.0 is limited to <2.5 mmag per unit redshift (1-sigma), consistent with the known, mild DLA metallicity evolution. There is also no apparent relationship with neutral hydrogen column density, N(HI), though the data are consistent with a mean E(B-V)/N(HI) = (3.5 +/- 1.0) x 10^{-24} mag cm^2, approximately the ratio expected from the SMC scaled to the lower metallicities typical of DLAs. We implement the SDSS selection algorithm in a portable code to assess the potential for systematic, redshift-dependent biases stemming from its magnitude and colour-selection criteria. The effect on the mean E(B-V) is negligible (<5 per cent) over the entire redshift range of interest. Given the broad potential usefulness of this implementation, we make it publicly available.
We present the results of our automatic search for proximate damped Ly$alpha$ absorption (PDLA) systems in the quasar spectra from the Sloan Digital Sky Survey Data Release 12. We constrain our search to those PDLAs lying within 1500 km s$^{-1}$ from the quasar to make sure that the broad DLA absorption trough masks most of the strong Ly$alpha$ emission from the broad line region (BLR) of the quasar. When the Ly$alpha$ emission from the BLR is blocked by these so-called eclipsing DLAs, narrow Ly$alpha$ emission from the host galaxy could be revealed as a narrow emission line (NEL) in the DLA trough. We define a statistical sample of 399 eclipsing DLAs with log$N$(HI)$ge$21.10. We divide our statistical sample into three subsamples based on the strength of the NEL detected in the DLA trough. By studying the stacked spectra of these subsamples, we found that absorption from high ionization species are stronger in DLAs with stronger NEL in their absorption core. Moreover, absorption from the excited states of species like SiII are also stronger in DLAs with stronger NEL. We also found no correlation between the luminosity of the Ly$alpha$ NEL and the quasar luminosity. These observations are consistent with a scenario in which the DLAs with stronger NEL are denser and physically closer to the quasar. We propose that these eclipsing DLAs could be the product of the interaction between infalling and outflowing gas. High resolution spectroscopic observation would be needed to shed some light on the nature of these eclipsing DLAs.
We present a new catalogue of Damped Lyman-$alpha$ absorbers from SDSS DR16Q, as well as new estimates of their statistical properties. Our estimates are computed with the Gaussian process models presented in Garnett et al. (2017); Ho et al. (2020) with an improved model for marginalising uncertainty in the mean optical depth of each quasar. We compute the column density distribution function (CDDF) at $2 < z < 5$, the line density ($textrm{d} N/ textrm{d} X$), and the neutral hydrogen density ($Omega_{textrm{DLA}}$). Our Gaussian process model provides a posterior probability distribution of the number of DLAs per spectrum, thus allowing unbiased probabilistic predictions of the statistics of DLA populations even with the noisiest data. We measure a non-zero column density distribution function for $N_{textrm{HI}} < 3 times 10^{22} ,textrm{cm}^{-2}$ with $95%$ confidence limits, and $N_{textrm{HI}} lesssim 10^{22} ,textrm{cm}^{-2}$ for spectra with signal-to-noise ratios $> 4$. Our results for DLA line density and total hydrogen density are consistent with previous measurements. Despite a small bias due to the poorly measured blue edges of the spectra, we demonstrate that our new model can measure the DLA population statistics when the DLA is in the Lyman-$beta$ forest region. We verify our results are not sensitive to the signal-to-noise ratios and redshifts of the background quasars although a residual correlation remains for detections from $z_{textrm{QSO}} < 2.5$, indicating some residual systematics when applying our models on very short spectra, where the SDSS spectral observing window only covers part of the Lyman-$alpha$ forest.
The XQ-100 survey has provided high signal-noise spectra of 100 redshift 3-4.5 quasars with the X-Shooter spectrograph. The metal abundances for 13 elements in the 41 damped Lyman alpha systems (DLAs) identified in the XQ-100 sample are presented, and an investigation into abundances of a variety of DLA classes is conducted. The XQ-100 DLA sample contains five DLAs within 5000 km/s of their host quasar (proximate DLAs; PDLAs) as well as three sightlines which contain two DLAs within 10,000 km/s of each other along the same line-of-sight (multiple DLAs; MDLAs). Combined with previous observations in the literature, we demonstrate that PDLAs with logN(HI)<21.0 show lower [S/H] and [Fe/H] (relative to intervening systems with similar redshift and N(HI)), whilst higher [S/H] and [Si/H] are seen in PDLAs with logN(HI)>21.0. These abundance discrepancies are independent of their line-of-sight velocity separation from the host quasar, and the velocity width of the metal lines (v90). Contrary to previous studies, MDLAs show no difference in [alpha/Fe] relative to single DLAs matched in metallicity and redshift. In addition, we present follow-up UVES data of J0034+1639, a sightline containing three DLAs, including a metal-poor DLA with [Fe/H]=-2.82 (the third lowest [Fe/H] in DLAs identified to date) at z=4.25. Lastly we study the dust-corrected [Zn/Fe], emphasizing that near-IR coverage of X-Shooter provides unprecedented access to MgII, CaII and TiII lines (at redshifts 3-4) to provide additional evidence for subsolar [Zn/Fe] ratio in DLAs.
We present the Data Release 12 Quasar catalog (DR12Q) from the Baryon Oscillation Spectroscopic Survey (BOSS) of the SDSS-III. This catalog includes all SDSS-III/BOSS objects that were spectroscopically targeted as quasar candidates during the full survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities Mi[z=2]<-20.5 (in a LCDM cosmology with H_0 = 70 km/s/Mpc, Omega_M = 0.3, and Omega _L=0.7), and either display at least one emission line with a full width at half maximum (FWHM)larger than 500 km/s or, if not, have interesting/complex absorption features. The catalog also includes previously known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 297,301 quasars detected over 9,376 square degrees with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z>2.15 is about an order of magnitude greater than the number of z>2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (CIV, CIII], MgII). The catalog identifies 29,580 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry together with some information on the optical morphology and the selection criteria. When available, the catalog also provides information on the optical variability of quasars using SDSS and PTF multi-epoch photometry. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3,600-10,500A at a spectral resolution in the range 1,300<R<2,500, can be retrieved from the SDSS Catalog Archive Server.
We present the Data Release 14 Quasar catalog (DR14Q) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). This catalog includes all SDSS-IV/eBOSS objects that were spectroscopically targeted as quasar candidates and that are confirmed as quasars via a new automated procedure combined with a partial visual inspection of spectra, have luminosities $M_{rm i} left[ z=2 right] < -20.5$ (in a $Lambda$CDM cosmology with $H_0 = 70 {rm km s^{-1} Mpc ^{-1}}$, $Omega_{rm M} = 0.3$, and $Omega_{rm Lambda} = 0.7$), and either display at least one emission line with a full width at half maximum (FWHM) larger than $500 {rm km s^{-1}}$ or, if not, have interesting/complex absorption features. The catalog also includes previously spectroscopically-confirmed quasars from SDSS-I, II and III. The catalog contains 526,356 quasars 144,046 are new discoveries since the beginning of SDSS-IV) detected over 9,376 deg$^2$ (2,044 deg$^2$ having new spectroscopic data available) with robust identification and redshift measured by a combination of principal component eigenspectra. The catalog is estimated to have about 0.5% contamination. The catalog identifies 21,877 broad absorption line quasars and lists their characteristics. For each object, the catalog presents SDSS five-band CCD-based photometry with typical accuracy of 0.03 mag. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys.