No Arabic abstract
We have used a plane-wave expansion method to theoretically study the far-field head-media optical interaction in HAMR. For the ASTC media stack specifically, we notice the outstanding sensitivity related to interlayers optical thickness for media reflection and magnetic layers light absorption. With 10-nm interlayer thickness change, the recording layer absorption can be changed by more than 25%. The 2-D results are found to correlate well with full 3-D model and magnetic recording tests on flyable disc with different interlayer thickness.
Enhancing light absorption in the recording media layer can improve the energy efficiency and prolong the device lifetime in heat assisted magnetic recording (HAMR). In this work, we report the design and implementation of a resonant nanocavity structure to enhance the light-matter interaction within an ultrathin FePt layer. In a Ag/SiO2/FePt trilayer structure, the thickness of the dielectric SiO2 layer is systematically tuned to reach maximum light absorption at the wavelength of 830 nm. In the optimized structure, the light reflection is reduced by more than 50%. This results in effective laser heating of the FePt layer, as imaged by an infrared camera. The scheme is highly scalable for thinner FePt layers and shorter wavelengths to be used in future HAMR technologies.
The reduction of the transition curvature of written bits in heat-assisted magnetic recording (HAMR) is expected to play an important role for the future areal density increase of hard disk drives. Recently a write head design with flipped write and return poles was proposed. In this design a large spatial field gradient of the write head was the key to significantly reduce the transition curvature. In this work we optimized the write pole of a heat-assisted magnetic recording head in order to produce large field gradients as well as large fields in the region of the heat pulse. This is done by topology optimization. The simulations are performed with dolfin-adjoint. For the maximum field gradients of $8.1,$mT/nm, $8.6,$mT/nm and $11.8,$mT/nm, locally resolved footprints of an FePt like hard magnetic recording medium are computed with a coarse-grained Landau-Lifshitz-Bloch (LLB) model and the resulting transition curvature is analysed. Additional simulations with a bilayer structure with $50%$ hard and $50%$ soft magnetic material are computed. The results show that for both recording media, the optimized head design does not lead to any significant improvement of the written track. Thus, we analyse the transition curvature for the optimized write heads theoretically with an effective recording time window (ERTW) model. Moreover, we check how higher field gradients influence the curvature reduction. The results show that a simple optimization of the conventional head design design is not sufficient for effective curvature reduction. Instead, new head concepts will be needed to reduce transition curvature.
In this paper we apply an extended Landau-Lifschitz equation, as introduced by Bav{n}as et al. for the simulation of heat-assisted magnetic recording. This equation has similarities with the Landau-Lifshitz-Bloch equation. The Bav{n}as equation is supposed to be used in a continuum setting with sub-grain discretization by the finite-element method. Thus, local geometric features and nonuniform magnetic states during switching are taken into account. We implement the Bav{n}as model and test its capability for predicting the recording performance in a realistic recording scenario. By performing recording simulations on 100 media slabs with randomized granular structure and consecutive read back calculation, the write position shift and transition jitter for bit lengths of 10nm, 12nm, and 20nm are calculated.
Bit Patterned Media (BPM) for magnetic recording provide a route to densities $>1 Tb/in^2$ and circumvents many of the challenges associated with conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM uses an array of lithographically defined isolated magnetic islands, each of which stores one bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this article we describe a BPM fabrication method which combines e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloys. This combination of fabrication technologies achieves feature sizes of $<10 nm$, significantly smaller than what conventional semiconductor nanofabrication methods can achieve. In contrast to earlier work which used hexagonal close-packed arrays of round islands, our latest approach creates BPM with rectangular bitcells, which are advantageous for integration with existing hard disk drive technology. The advantages of rectangular bits are analyzed from a theoretical and modeling point of view, and system integration requirements such as servo patterns, implementation of write synchronization, and providing for a stable head-disk interface are addressed in the context of experimental results. Optimization of magnetic alloy materials for thermal stability, writeability, and switching field distribution is discussed, and a new method for growing BPM islands on a patterned template is presented. New recording results at $1.6 Td/in^2$ (teradot/inch${}^2$, roughly equivalent to $1.3 Tb/in^2$) demonstrate a raw error rate $<10^{-2}$, which is consistent with the recording system requirements of modern hard drives. Extendibility of BPM to higher densities, and its eventual combination with energy assisted recording are explored.
The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern super-resolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near-field probing. Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or non-invasive biological imaging. Far-field, linear-optical super-resolution techniques based on passive analysis of light coming from the object would cover these gaps. In this paper, we present the first proof-of-principle demonstration of such a technique. It works by accessing information about spatial correlations of the image optical field and, hence, about the object itself via measuring projections onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the diffraction limit.