No Arabic abstract
Phonon spectra of detwinned {SrFe$_2$As$_2$} crystals, as measured by inelastic x-ray scattering, show clear anisotropy accompanying the magneto-structural transition at 200 K. We model the mode splitting using magnetic DFT calculations, including a phenomenological reduction in force-constant anisotropy that can be attributed to magnetic fluctuations. This serves as a starting point for a general model of phonons in this material applicable to both magnetic and non-magnetic phase. Using this model, the measured splitting in the magnetic phase below $it T_{N}$, and the measured phonon linewidth, we set a lower bound on the mean magnetic fluctuation frequency above $it T_{N}$ at 210 K.
A detailed elastic neutron scattering study of the structural and magnetic phase transitions in single-crystal SrFe$_2$As$_2$ reveals that the orthorhombic (O)-tetragonal (T) and the antiferromagnetic transitions coincide at $T_texttt{O}$ = $T_texttt{N}$ = (201.5 $pm$ 0.25) K. The observation of coexisting O-T phases over a finite temperature range at the transition and the sudden onset of the O distortion provide strong evidences that the structural transition is first order. The simultaneous appearance and disappearance within 0.5 K upon cooling and within 0.25 K upon warming, respectively, indicate that the magnetic and structural transitions are intimately coupled. We find that the hysteresis in the transition temperature extends over a 1-2 K range. Based on the observation of a remnant orthorhombic phase at temperatures higher than emph{T}$_texttt{O}$, we suggest that the T-O transition may be an order-disorder transition.
Neutron diffraction measurements have been carried out to investigate the magnetic form factor of the parent SrFe2As2 system of the iron-based superconductors. The general feature is that the form factor is approximately isotropic in wave vector, indicating that multiple d-orbitals of the iron atoms are occupied as expected based on band theory. Inversion of the diffraction data suggests that there is some elongation of the spin density toward the As atoms. We have also extended the diffraction measurements to investigate a possible jump in the c-axis lattice parameter at the structural phase transition, but find no detectable change within the experimental uncertainties.
In order to investigate whether magnetism and superconductivity coexist in Co-doped SrFe$_2$As$_2$, we have prepared single crystals of SrFe$_{2-x}$Co$_x$As$_2$, $x$ = 0 and 0.4, and characterized them via X-ray diffraction, electrical resistivity in zero and applied field up to 9 T as well as at ambient and applied pressure up to 1.6 GPa, and magnetic susceptibility. At $x$ = 0.4, there is both magnetic and resistive evidence for a spin density wave transition at 120 K, while $T_c$ = 19.5 K - indicating coexistent magnetism and superconductivity. A discussion of how these results compare with reported results, both in SrFe$_{2-x}$Co$_x$As$_2$ and in other doped 122 compounds, is given.
Inelastic x-ray scattering and $ab$-$initio$ calculation are applied to investigate the lattice dynamics and electron-phonon coupling of the ternary silicide superconductor CaAlSi ($P/bar{6}m2$). A soft c-axis polarized mode is clearly observed along the $/Gamma$-$A$-$L$ symmetry directions. The soft mode is strongly anharmonically broadened at room temperature, but, at 10 K, its linewidth narrows and becomes in good agreement with calculations of linear electron-phonon coupling. This establishes a coherent description of the detailed phonon properties in this system and links them clearly and consistently with the superconductivity.
We investigated SrFe$mathrm{_2}$(As$mathrm{_{1-x}}$P$mathrm{_x}$)$mathrm{_2}$ single crystals with four different phosphorus concentrations x in the superconducting phase (x = 0.35, 0.46) and in the magnetic phase (x = 0, 0.2). The superconducting samples display a V-shaped superconducting gap, which suggests nodal superconductivity. Furthermore we determined the superconducting coherence length by measuring the spatially resolved superconducting density of states (DOS). Using inelastic tunneling spectroscopy we investigated excitations in the samples with four different phosphorus concentrations. Inelastic peaks are related to bosonic modes. Phonon and non-phonon mechanism for the origin of these peaks are discussed.